10折交叉验证

import os
import cv2
import random
import shutil
import numpy as np


def get_data_crop(k):
    # 获取所有病人序列名称与所有训练文件名称
    name_list, file_list = [], []
    for root, dirs, files in os.walk('./seg'):
        for f in files:
            if f.split('-')[0] not in name_list:
                name_list.append(f.split('-')[0])
            file_list.append(root + '/' + f)
    random.shuffle(name_list)

    #k折交叉验证
    for i in range(8,10):
        fold_size = len(name_list) // k
        test_name = name_list[i*fold_size:(i+1)*fold_size]
        train_file, test_file = [], []
        for file in file_list:
            if file.split('/')[-1].split('-')[0] in test_name:
                try:
                    shutil.copy(file,'.\\K10\\test_'+str(i+1)+'\\M\\'+file.split('/')[-1])
                    shutil.copy(file.replace('seg','img'), '.\\K10\\test_' + str(i+1) + '\\I\\' +   file.split('/')[-1])
                except Exception:
                    os.makedirs('.\\K10\\test_'+str(i+1)+'\\M\\')
                    shutil.copy(file, '.\\K10\\test_' + str(i+1) +'\\M\\' +file.split('/')[-1])
                    os.makedirs('.\\K10\\test_' + str(i+1) + '\\I\\')
                    shutil.copy(file.replace('seg', 'img'),'.\\K10\\test_' + str(i+1) + '\\I\\' +  file.split('/')[-1])
            else:
                try:
                    shutil.copy(file, '.\\K10\\train_' + str(i+1) +'\\M\\'+file.split('/')[-1])
                    shutil.copy(file.replace('seg', 'img'),'.\\K10\\train_' + str(i+1) + '\\I\\' + file.split('/')[-1])
                except Exception:
                    print(file)
                    print(i+1)
                    os.makedirs('.\\K10\\train_'+str(i+1) +'\\M\\')
                    shutil.copy(file, '.\\K10\\train_'+str(i+1) + '\\M\\'  +file.split('/')[-1])
                    os.makedirs('.\\K10\\train_' + str(i+1) + '\\I\\' )
                    shutil.copy(file.replace('seg', 'img'),'.\\K10\\train_' + str(i+1) + '\\I\\'  +  file.split('/')[-1])
get_data_crop(10)

你可能感兴趣的:(CV,python,深度学习,pytorch)