今天学长向大家介绍一个深度学习中的一个经典网络
CNN模型:ResNet
关联分析是一种在大规模数据集中寻找有趣关系的任务。
这种关系表现为两种形式:
1.频繁项集(frequency item sets):经常同时出现的一些元素的集合;
2.关联规则(association rules): 意味着两种元素之间存在很强的关系。
下面学长举例来说明上面的两个概念:
频繁项集是指经常出现在一起的元素的集合,上表中的集合 {葡萄酒,尿布,豆奶} 就是频繁项集的一个例子。
同样可以找到如 **“尿布 --> 葡萄酒”**的关联规则,意味着如果有人买了尿布,就很可能也会买葡萄酒。
使用频繁项集和关联规则,商家可以更好地理解顾客的消费行为,所以大部分关联规则分析示例来自零售业。
理解关联分析首先需要搞清楚下面三个问题:
1.如何定义这些有用的关系?
2.这些关系的强弱程度又是如何定义?
3.频繁的定义是什么?
要回答上面的问题,最重要的是理解两个概念:支持度和可信度。
一个项集的支持度(support)被定义为数据集中包含该项集的记录占总记录的比例。从表1 可以看出 项集 {豆奶} 的支持度为 [Math Processing Error]; 而在 5 条交易记录中 3 条包含 {豆奶,尿布},因此 {豆奶,尿布} 的支持度为 [Math Processing Error].
是针对一条诸如[Math Processing Error]的关联规则来定义的,这条规则的可信度被定义为“ 支持度({尿布,葡萄酒}) / 支持度({尿布})”。在表1 中可以发现 {尿布,葡萄酒} 的支持度是 [Math Processing Error], {尿布} 的支持度为 [Math Processing Error], 所以关联规则 “尿布 --> 葡萄酒”的可信度为 [Math Processing Error], 意思是对于所有包含 "尿布"的记录中,该关联规则对其中的 75% 记录都适用。
假设经营了一家杂货店,于是我们对那些经常在一起购买的商品非常感兴趣。假设我们只有 4 种商品:商品0,商品1,商品 2,商品3. 那么如何得可能被一起购买的商品的组合?
上图显示了物品之间所有可能的组合,从上往下一个集合是 [Math Processing Error],表示不包含任何物品的空集,物品集合之间的连线表明两个或者更多集合可以组合形成一个更大的集合。
我们的目标是找到经常在一起购买的物品集合。这里使用集合的支持度来度量其出现的频率。一个集合出现的支持度是指有多少比例的交易记录包含该集合。例如,对于上图,要计算 [Math Processing Error] 的支持度,直接的想法是遍历每条记录,统计包含有 [Math Processing Error] 和 [Math Processing Error] 的记录的数量,使用该数量除以总记录数,就可以得到支持度。而这只是针对单个集合 [Math Processing Error]. 要获得每种可能集合的支持度就需要多次重复上述过程。对于上图,虽然仅有4中物品,也需要遍历数据15次。随着物品数目的增加,遍历次数会急剧增加,对于包含 [Math Processing Error] 种物品的数据集共有 [Math Processing Error] 种项集组合。所以即使只出售 [Math Processing Error] 种商品的商店也会有 [Math Processing Error] 中可能的组合。计算量太大。
为了降低计算时间,研究人员发现了 [Math Processing Error] 原理,可以帮我们减少感兴趣的频繁项集的数目。
[Math Processing Error] 的原理:如果某个项集是频繁项集,那么它所有的子集也是频繁的。
即如果 {0,1} 是频繁的,那么 {0}, {1} 也一定是频繁的。
这个原理直观上没有什么用,但是反过来看就有用了,也就是说如果一个项集是非频繁的,那么它的所有超集也是非频繁的。如下图所示:
上面学长提到,关联分析的两个目标:发现频繁项集和发现关联规则。首先需要找到频繁项集,然后根据频繁项集获得关联规则。首先来讨论发现频繁项集。
Apriori 是发现频繁项集的一种方法。
首先会生成所有单个物品的项集列表;
扫描交易记录来查看哪些项集满足最小支持度要求,那些不满足最小支持度的集合会被去掉;
对剩下的集合进行组合以生成包含两个元素的项集;
接下来重新扫描交易记录,去掉不满足最小支持度的项集,重复进行直到所有项集都被去掉。
代码实现
# -*- coding: utf-8 -*-
"""
Apriori exercise.
@author: 丹成学长,q746876041
"""
def loadDataSet():
'''创建一个用于测试的简单的数据集'''
return [ [ 1, 3, 4 ], [ 2, 3, 5 ], [ 1, 2, 3, 5 ], [ 2, 5 ] ]
def createC1( dataSet ):
'''
构建初始候选项集的列表,即所有候选项集只包含一个元素,
C1是大小为1的所有候选项集的集合
'''
C1 = []
for transaction in dataSet:
for item in transaction:
if [ item ] not in C1:
C1.append( [ item ] )
C1.sort()
return map( frozenset, C1 )
def scanD( D, Ck, minSupport ):
'''
计算Ck中的项集在数据集合D(记录或者transactions)中的支持度,
返回满足最小支持度的项集的集合,和所有项集支持度信息的字典。
'''
ssCnt = {}
for tid in D:
# 对于每一条transaction
for can in Ck:
# 对于每一个候选项集can,检查是否是transaction的一部分
# 即该候选can是否得到transaction的支持
if can.issubset( tid ):
ssCnt[ can ] = ssCnt.get( can, 0) + 1
numItems = float( len( D ) )
retList = []
supportData = {}
for key in ssCnt:
# 每个项集的支持度
support = ssCnt[ key ] / numItems
# 将满足最小支持度的项集,加入retList
if support >= minSupport:
retList.insert( 0, key )
# 汇总支持度数据
supportData[ key ] = support
return retList, supportData
注:关于上面代码中 “frozenset”,是为了冻结集合,使集合由“可变”变为 “不可变”,这样,这些集合就可以作为字典的键值。
首先来测试一下上面代码,看看运行效果:
if __name__ == '__main__':
# 导入数据集
myDat = loadDataSet()
# 构建第一个候选项集列表C1
C1 = createC1( myDat )
# 构建集合表示的数据集 D
D = map( set, myDat )
# 选择出支持度不小于0.5 的项集作为频繁项集
L, suppData = scanD( D, C1, 0.5 )
print u"频繁项集L:", L
print u"所有候选项集的支持度信息:", suppData
运行结果:
>>> runfile('E:/Python/PythonScripts/Apriori.py', wdir=r'E:/Python/PythonScripts')
频繁项集L: [frozenset([1]), frozenset([3]), frozenset([2]), frozenset([5])]
所有候选项集的支持度信息: {frozenset([4]): 0.25, frozenset([5]): 0.75, frozenset([2]): 0.75, frozenset([3]): 0.75, frozenset([1]): 0.5}
可以看出,只有支持度不小于 0.5 的项集被选中到 L 中作为频繁项集,根据不同的需求,我们可以设定最小支持度的值,从而得到我们想要的频繁项集。
要找到关联规则,先从一个频繁集开始,我们想知道对于频繁项集中的元素能否获取其它内容,即某个元素或者某个集合可能会推导出另一个元素。从表1 可以得到,如果有一个频繁项集 {豆奶,莴苣},那么就可能有一条关联规则 “豆奶 --> 莴苣”,意味着如果有人购买了豆奶,那么在统计上他会购买莴苣的概率较大。但是这一条反过来并不一定成立。
\从一个频繁项集可以产生多少条关联规则呢?可以基于该频繁项集生成一个可能的规则列表,然后测试每条规则的可信度,如果可信度不满足最小值要求,则去掉该规则。类似于前面讨论的频繁项集生成,一个频繁项集可以产生许多可能的关联规则,如果能在计算规则可信度之前就减少规则的数目,就会很好的提高计算效率。
这里有一条规律就是:如果某条规则并不满足最小可信度要求,那么该规则的所有子集也不会满足最小可信度要求,例如下图的解释:
所以,可以利用上图所示的性质来减少测试的规则数目。
关联规则生成函数清单:
# 规则生成与评价
def calcConf( freqSet, H, supportData, brl, minConf=0.7 ):
'''
计算规则的可信度,返回满足最小可信度的规则。
freqSet(frozenset):频繁项集
H(frozenset):频繁项集中所有的元素
supportData(dic):频繁项集中所有元素的支持度
brl(tuple):满足可信度条件的关联规则
minConf(float):最小可信度
'''
prunedH = []
for conseq in H:
conf = supportData[ freqSet ] / supportData[ freqSet - conseq ]
if conf >= minConf:
print freqSet - conseq, '-->', conseq, 'conf:', conf
brl.append( ( freqSet - conseq, conseq, conf ) )
prunedH.append( conseq )
return prunedH
def rulesFromConseq( freqSet, H, supportData, brl, minConf=0.7 ):
'''
对频繁项集中元素超过2的项集进行合并。
freqSet(frozenset):频繁项集
H(frozenset):频繁项集中的所有元素,即可以出现在规则右部的元素
supportData(dict):所有项集的支持度信息
brl(tuple):生成的规则
'''
m = len( H[ 0 ] )
# 查看频繁项集是否大到移除大小为 m 的子集
if len( freqSet ) > m + 1:
Hmp1 = aprioriGen( H, m + 1 )
Hmp1 = calcConf( freqSet, Hmp1, supportData, brl, minConf )
# 如果不止一条规则满足要求,进一步递归合并
if len( Hmp1 ) > 1:
rulesFromConseq( freqSet, Hmp1, supportData, brl, minConf )
def generateRules( L, supportData, minConf=0.7 ):
'''
根据频繁项集和最小可信度生成规则。
L(list):存储频繁项集
supportData(dict):存储着所有项集(不仅仅是频繁项集)的支持度
minConf(float):最小可信度
'''
bigRuleList = []
for i in range( 1, len( L ) ):
for freqSet in L[ i ]:
# 对于每一个频繁项集的集合freqSet
H1 = [ frozenset( [ item ] ) for item in freqSet ]
# 如果频繁项集中的元素个数大于2,需要进一步合并
if i > 1:
rulesFromConseq( freqSet, H1, supportData, bigRuleList, minConf )
else:
calcConf( freqSet, H1, supportData, bigRuleList, minConf )
return bigRuleList
if __name__ == '__main__':
# 导入数据集
myDat = loadDataSet()
# 选择频繁项集
L, suppData = apriori( myDat, 0.5 )
rules = generateRules( L, suppData, minConf=0.7 )
print 'rules:\n', rules
运行结果:
>>> runfile('E:/Python/PythonScripts/Apriori.py', wdir=r'E:/Python/PythonScripts')
frozenset([1]) --> frozenset([3]) conf: 1.0
frozenset([5]) --> frozenset([2]) conf: 1.0
frozenset([2]) --> frozenset([5]) conf: 1.0
rules:
[(frozenset([1]), frozenset([3]), 1.0), (frozenset([5]), frozenset([2]), 1.0), (frozenset([2]), frozenset([5]), 1.0)]
将可信度降为 0.5 之后:
>>> runfile('E:/Python/PythonScripts/Apriori.py', wdir=r'E:/Python/PythonScripts')
frozenset([3]) --> frozenset([1]) conf: 0.666666666667
frozenset([1]) --> frozenset([3]) conf: 1.0
frozenset([5]) --> frozenset([2]) conf: 1.0
frozenset([2]) --> frozenset([5]) conf: 1.0
frozenset([3]) --> frozenset([2]) conf: 0.666666666667
frozenset([2]) --> frozenset([3]) conf: 0.666666666667
frozenset([5]) --> frozenset([3]) conf: 0.666666666667
frozenset([3]) --> frozenset([5]) conf: 0.666666666667
frozenset([5]) --> frozenset([2, 3]) conf: 0.666666666667
frozenset([3]) --> frozenset([2, 5]) conf: 0.666666666667
frozenset([2]) --> frozenset([3, 5]) conf: 0.666666666667
rules:
[(frozenset([3]), frozenset([1]), 0.6666666666666666), (frozenset([1]), frozenset([3]), 1.0), (frozenset([5]), frozenset([2]), 1.0), (frozenset([2]), frozenset([5]), 1.0), (frozenset([3]), frozenset([2]), 0.6666666666666666), (frozenset([2]), frozenset([3]), 0.6666666666666666), (frozenset([5]), frozenset([3]), 0.6666666666666666), (frozenset([3]), frozenset([5]), 0.6666666666666666), (frozenset([5]), frozenset([2, 3]), 0.6666666666666666), (frozenset([3]), frozenset([2, 5]), 0.6666666666666666), (frozenset([2]), frozenset([3, 5]), 0.6666666666666666)]