东北大学满分matlab实验报告.doc
第一部分MATLAB语言编程、科学绘图与基本数学问题求解2用MATLAB语句输入矩阵和AB,14234J13J214JJ前面给出的是矩阵,如果给出命令将得出什么结果56,A解A1234432123413241B14J23J32J41J4J32J23J14J23J32J41J14J32J23J4J14JA5,65第五行第六列为5,其余空位补0;3假设已知矩阵,试给出相应的MATLAB命令,将其全部偶数行提取出来,A赋给矩阵,用命令生成矩阵,用上述命令检验一下结果是不BMAGIC8A是正确。解A1234432123413241BA22END,AMAGIC84用数值方法可以求出,试不采用循环的63063281IS形式求出和式的数值解。由于数值方法是采用DOUBLE形式进行计算的,难以保证有效位数字,所以结果不一定精确。试采用运算的方法求该和式的精确值。解A063SSUM2AS18447E019SYMSKSSYMSUM2K,0,63S184467440737095516155选择合适的步距绘制出下面的图形。(1),其中;(2),其中。/SINT1,TTANSISIT,T解(1)T100141YSIN1/TPLOTT,Y10806040200204060811080604020020406081(2)TPI005PIYSINTANTTANSINTPLOTT,Y43210123432101236试绘制出二元函数的三维图和三视2211,YXYXYXFZ图。解X,YMESHGRID212Z1/SQRT1X2Y21/SQRT1X2Y2SUBPLOT224,SURFX,Y,ZSUBPLOT221,SURFX,Y,Z,VIEW0,90俯视图SUBPLOT222,SURFX,Y,Z,VIEW90,0侧视图SUBPLOT223,SURFX,Y,Z,VIEW00正视图20220201020210122101221012051015202202010207试求出如下极限。(1);(2);(3)。XX193LIM1LIM0XY2COS1LIM20YXYXE解(1)SYMSXF3X9X1/XLLIMITF,X,INFL9(2)SYMSXYFXY/SQRTXY11LLIMITLIMITF,X,0,Y,0L2(3)SYMSXYF1COSX2Y2/X2Y2EXPX2Y2LLIMITLIMITF,X,0,Y,0L08已知参数方程,试求出和。TTYXSINCOLXYD3/2T解SYMSTXLOGCOSTYCOSTTSINTFDIFFY,T/DIFFX,TF1DIFFY,T,2/DIFFX,T,2LSUBSF1,T,PI/3FCOST2SINTTCOST/SINTF13COSTTSINT/SINT2/COST21L3/8PI31/2/249假设,试求。XYTEF0D,2222YFXFY解SYMSXYTFINTEXPT2,T,0,XYF1X/YDIFFF,X,22DIFFDIFFF,X,YDIFFF,Y,2F12X2Y2EXPX2Y22X3YEXPX2Y22EXPX2Y210试求出下面的极限。(1);1216412LIM22NN(2)。3LI22NN解1SYMSMNSLIMITSYMSUM1/2M21,M,1,N,N,INFS1/2(2)SYMSNMFLIMITSYMSUM1/N2MPI,M,1,N,N,INFF011试求出以下的曲线积分。(1),为曲线,,LSYXD2LSINCOTTAXCOSINTTAY。0T(2),其中为正向上半LYYXEEXD233L22CYBX椭圆。解1SYMSTAXACOSTTSINTYASINTTCOSTIINTX2Y2SQRTDIFFX,T2DIFFY,T2,T,0,2PII2PI22PI21A23/22SYMSTABSYMSCPOSITIVEXC/A2COSTYC/B2SINTFYX3EXPY,XY3XEXPY2YDSDIFFX,TDIFFY,TIINTFDS,T,0,2PII012试求出VANDERMONDE矩阵的行列式,并以最简的形1EEDDCCBB1AA234234A式显示结果。解SYMSABCDECA,B,C,D,EVVANDERCSIMPLIFYDETVVA4,A3,A2,A,1B4,B3,B2,B,1C4,C3,C2,C,1D4,D3,D2,D,1E4,E3,E2,E,1ANSABACADBCAEBDBECDCEDE13试对矩阵进行JORDAN变换,并得出变换矩阵。21205405A解A2,05,05,050,15,05,052,05,45,052122JJORDANAV,JJORDANAV00500005000025000005000100000250005000050000250002500050001000002500J400002100021000214试用数值方法和解析方法求取下面的SYLVESTER方程,并验证得出的结果。3641529123430411376254X解A3,6,4,0,514224636731310011004034B321292219C211412561644663XLYAPA,B,CX40569145128156530035625074327408948862593234417726969216450288517722931910037634NORMAXXBCANS34356E1315假设已知矩阵如下,试求出,,。AATETSINSI2TEAT310521504解A4500515054050515125150113ASYMASYMSTEXPATSINATEXPATSINA2EXPATTANSEXP9T/2,1,EXPT/2,EXP3T/2EXPT/2,EXP4T,EXPT/2,EXPT/2EXP3T/2,EXPT,EXP5T/2,EXP3T/21,EXPT,EXPT,EXP3TANSSIN9T/2,0,SINT/2,SIN3T/2SINT/2,SIN4T,SINT/2,SINT/2SIN3T/2,SINT,SIN5T/2,SIN3T/20,SINT,SINT,SIN3TANSSINT17EXPT/23EXP3T/25EXP9T/25EXP3T/2SINT6EXPT/25EXP3T/2EXP9T/28EXPT/2SINT8EXPT/26EXP3T/211EXP9T/211EXP9T/2SINT2EXPT/22EXP3T/221EXP9T/212,SINT5EXPT17EXP4T3EXPT5SINT8EXPT6EXP4T5EXPT1EXP3T/2SINT11EXPT8EXP4T6EXPT11EXPT/2SINT12EXPT2EXP4T2EXPT21EXP9T/2,SINT5EXPT22EXPT/23EXP5T/2EXP3T/2SINT8EXPT5EXPT/25EXP5T/2EXPT