bp神经网络模型的优缺点,bp神经网络缺点及克服

bp神经网络模型的优缺点,bp神经网络缺点及克服_第1张图片

1、BP神经网络的核心问题是什么?其优缺点有哪些?

人工神经网络,是一种旨在模仿人脑结构及其功能的信息处理系统,就是使用人工神经网络方法实现模式识别.可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,神经网络方法允许样品有较大的缺损和畸变.神经网络的类型很多,建立神经网络模型时,根据研究对象的特点,可以考虑不同的神经网络模型. 前馈型BP网络,即误差逆传播神经网络是最常用,最流行的神经网络.BP网络的输入和输出关系可以看成是一种映射关系,即每一组输入对应一组输出.BP算法是最著名的多层前向网络训练算法,尽管存在收敛速度慢,局部极值等缺点,但可通过各种改进措施来提高它的收敛速度,克服局部极值现象,而且具有简单,易行,计算量小,并行性强等特点,目前仍是多层前向网络的首选算法.

  • 多层前向BP网络的优点:

  • 网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解内部机制复杂的问题;

  • 网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力;

  • 网络具有一定的推广、概括能力。

  • 多层前向BP网络的问题:

  • 从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;

  • 网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。

  • 难以解决应用问题的实例规模和网络规模间的矛盾。这涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题;

  • 网络结构的选择尚无一种统一而完整的理论指导,一般只能由经验选定。为此,有人称神经网络的结构选择为一种艺术。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题;

  • 新加入的样本要影响已学习成功的网络,而且刻画每个输入样本的特征的数目也必须相同;

  • 网络的预测能力(也称泛化能力、推广能力)与训练能力(也称逼近能力、学习能力)的矛盾。一般情况下,训练能力差时,预测能力也差,并且一定程度上,随训练能力地提高,预测能力也提高。但这种趋势有一个极限,当达到此极限时,随训练能力的提高,预测能力反而下降,即出现所谓“过拟合”现象。此时,网络学习了过多的样本细节,而不能反映样本内含的规律

  • 由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;

  • 存在麻痹现象,由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿;

  • 为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,这种方法将引起算法低效。

谷歌人工智能写作项目:小发猫

2、前馈神经网络、BP神经网络、卷积神经网络的区别与联系

一、计算方法不同

1、前馈神经网络:一种最简单的神经网络,各神经元分层排列bp神经网络的优点和缺点。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。

2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。

3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。

二、用途不同

1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。

2、BP神经网络:

(1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;

(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;

(3)分类:把输入向量所定义的合适方式进行分类;

(4)数据压缩:减少输出向量维数以便于传输或存储。

3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。

联系:

BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。

三、作用不同

1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。

2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。

3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。

扩展资料

1、BP神经网络优劣势

BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。

①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。

②容易陷入局部极小值。

③网络层数、神经元个数的选择没有相应的理论指导。

④网络推广能力有限。

2、人工神经网络的特点和优越性,主要表现在以下三个方面

①具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、效益预测,其应用前途是很远大的。

②具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。

③具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

参考资料:

3、bp神经网络的缺点

1)局部极小化问题:从数学角度看,传统的BP神经网络为一种局部搜索的优化方法,它要解决的是一个复杂非线性化问题,网络的权值是通过沿局部改善的方向逐渐进行调整的,这样会使算法陷入局部极值,权值收敛到局部极小点,从而导致网络训练失败。加上BP神经网络对初始网络权重非常敏感,以不同的权重初始化网络,其往往会收敛于不同的局部极小,这也是很多学者每次训练得到不同结果的根本原因。
2)BP神经网络算法的收敛速度慢:由于BP神经网络算法本质上为梯度下降法,它所要优化的目标函数是非常复杂的,因此,必然会出现“锯齿形现象”,这使得BP算法低效;又由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿。
3)BP神经网络结构选择不一:BP神经网络结构的选择至今尚无一种统一而完整的理论指导,一般只能由经验选定。网络结构选择过大,训练中效率不高,可能出现过拟合现象,造成网络性能低,容错性下降,若选择过小,则又会造成网络可能不收敛。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题。
4)应用实例与网络规模的矛盾问题:BP神经网络难以解决应用问题的实例规模和网络规模间的矛盾问题,其涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题。
5)BP神经网络预测能力和训练能力的矛盾问题:预测能力也称泛化能力或者推广能力,而训练能力也称逼近能力或者学习能力。一般情况下,训练能力差时,预测能力也差。

4、RBF神经网络和BP神经网络有什么区别

1.RBF 的泛化能力在多个方面都优于BP 网络, 但是在解决具有相同精度要求的问题时, BP网络的结构要比RBF 网络简单。
2. RBF 网络的逼近精度要明显高于BP 网络,它几乎能实现完全逼近, 而且设计起来极其方便, 网络可以自动增加神经元直到满足精度要求为止。但是在训练样本增多时, RBF 网络的隐层神经元数远远高于前者, 使得RBF 网络的复杂度大增加, 结构过于庞大, 从而运算量也有所增加。
3. RBF神经网络是一种性能优良的前馈型神经网络,RBF网络可以任意精度逼近任意的非线性函数,且具有全局逼近能力,从根本上解决了BP网络的局部最优问题,而且拓扑结构紧凑,结构参数可实现分离学习,收敛速度快。
4. 他们的结构是完全不一样的。BP是通过不断的调整神经元的权值来逼近最小误差的。其方法一般是梯度下降。RBF是一种前馈型的神经网络,也就是说他不是通过不停的调整权值来逼近最小误差的,的激励函数是一般是高斯函数和BP的S型函数不一样,高斯函数是通过对输入与函数中心点的距离来算权重的。
5. bp神经网络学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的。而rbf神经网络是种高效的前馈式网络,它具有其他前向网络所不具有的最佳逼近性能和全局最优特性,并且结构简单,训练速度快。

5、BP人工神经网络

人工神经网络(artificialneuralnetwork,ANN)指由大量与自然神经系统相类似的神经元联结而成的网络,是用工程技术手段模拟生物网络结构特征和功能特征的一类人工系统。神经网络不但具有处理数值数据的一般计算能力,而且还具有处理知识的思维、学习、记忆能力,它采用类似于“黑箱”的方法,通过学习和记忆,找出输入、输出变量之间的非线性关系(映射),在执行问题和求解时,将所获取的数据输入到已经训练好的网络,依据网络学到的知识进行网络推理,得出合理的答案与结果。

岩土工程中的许多问题是非线性问题,变量之间的关系十分复杂,很难用确切的数学、力学模型来描述。工程现场实测数据的代表性与测点的位置、范围和手段有关,有时很难满足传统统计方法所要求的统计条件和规律,加之岩土工程信息的复杂性和不确定性,因而运用神经网络方法实现岩土工程问题的求解是合适的。

BP神经网络模型是误差反向传播(BackPagation)网络模型的简称。它由输入层、隐含层和输出层组成。网络的学习过程就是对网络各层节点间连接权逐步修改的过程,这一过程由两部分组成:正向传播和反向传播。正向传播是输入模式从输入层经隐含层处理传向输出层;反向传播是均方误差信息从输出层向输入层传播,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,使得误差信号最小。

BP神经网络模型在建立及应用过程中,主要存在的不足和建议有以下四个方面:

(1)对于神经网络,数据愈多,网络的训练效果愈佳,也更能反映实际。但在实际操作中,由于条件的限制很难选取大量的样本值进行训练,样本数量偏少。

(2)BP网络模型其计算速度较慢、无法表达预测量与其相关参数之间亲疏关系。

(3)以定量数据为基础建立模型,若能收集到充分资料,以定性指标(如基坑降水方式、基坑支护模式、施工工况等)和一些易获取的定量指标作为输入层,以评价等级作为输出层,这样建立的BP网络模型将更准确全面。

(4)BP人工神经网络系统具有非线性、智能的特点。较好地考虑了定性描述和定量计算、精确逻辑分析和非确定性推理等方面,但由于样本不同,影响要素的权重不同,以及在根据先验知识和前人的经验总结对定性参数进行量化处理,必然会影响评价的客观性和准确性。因此,在实际评价中只有根据不同的基坑施工工况、不同的周边环境条件,应不同用户的需求,选择不同的分析指标,才能满足复杂工况条件下地质环境评价的要求,取得较好的应用效果。

6、神经网络优缺点,

优点:

(1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。

自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。

(2)具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。

(3)具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

缺点:

(1)最严重的问题是没能力来解释自己的推理过程和推理依据。

(2)不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。

(3)把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。

(4)理论和学习算法还有待于进一步完善和提高。

扩展资料:

神经网络发展趋势

人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。

将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。

神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。

由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。

参考资料:

7、bp神经网络研究现状

BP网络的误差逆传播算法因有中间隐含层和相应的学习规则,使得它具有很
强的非线性映射能力,而且网络的中间层数、各层神经元个数及网络的学习系数
等参数可以根据实际情况设定,有很大的灵活性,且能够识别含有噪声的样本,
经过学习能够把样本隐含的特征和规则分布在神经网络的连接权上。总的说来,
BP网络的优点主要有:
(1)算法推导清楚,学习精度较高;(2)经过训练后的BP网络,运行速度很快,有
的可用于实时处理;(3)多层(至少三层)BP网络具有理论上逼近任意非线性连续
函数的能力,也就是说,可以使多层前馈神经网络学会任何可学习的东西,而信
息处理的大部分问题都能归纳为数学映射,通过选择一定的非线性和连接强度调
节规律,BP网络就可解决任何一个信息处理的问题。目前,在手写字体的识别、
语音识别、文本一语言转换、图像识别以及生物医学信号处理方面已有实际的应
用。
同时BP算法与其它算法一样,也存在自身的缺陷:
(1)由于该算法采用误差导数指导学习过程,在存在较多局部极小点的情况下容易陷入局部极小点,不能保证收敛到全局最小点:(2)存在学习速度与精度之间的矛盾,当学习速度较快时,学习过程容易产生振荡,难以得到精确结果,而当学习速度较慢时,虽然结果的精度较高,但学习周期太长:(3)算法学习收敛速度慢;(4)网络学习记忆具有不稳定性,即当给一个训练好的网络提供新的学习记忆模式时,将使已有的连接权值打乱,导致已记忆的学习模式的信息消失;(5)网络中间层(隐含层)的层数及它的单元数的选取无理论上的指导,而是根据经验确定,因此网络的设计有时不一定是最佳的方案。

8、BP神经网络每次训练结果不一样是怎么回事?

因为初始权值和阈值是随机产生的。

神经网络每次结果不同是因为初始化的权值和阈值是随机的,因为每次的结果不一样,才有可能找到比较理想的结果,找到比较好的结果后,用命令save filename net;保存网络,可使预测的结果不会变化,调用时用命令load filename net;  

优劣势:

BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。

①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。

②容易陷入局部极小值。

③网络层数、神经元个数的选择没有相应的理论指导。

④网络推广能力有限。

对于上述问题,目前已经有了许多改进措施,研究最多的就是如何加速网络的收敛速度和尽量避免陷入局部极小值的问题。

9、BP神经网络方法

人工神经网络是近几年来发展起来的新兴学科,它是一种大规模并行分布处理的非线性系统,适用解决难以用数学模型描述的系统,逼近任何非线性的特性,具有很强的自适应、自学习、联想记忆、高度容错和并行处理能力,使得神经网络理论的应用已经渗透到了各个领域。近年来,人工神经网络在水质分析和评价中的应用越来越广泛,并取得良好效果。在这些应用中,纵观应用于模式识别的神经网络,BP网络是最有效、最活跃的方法之一。

BP网络是多层前向网络的权值学习采用误差逆传播学习的一种算法(Error Back Propagation,简称BP)。在具体应用该网络时分为网络训练及网络工作两个阶段。在网络训练阶段,根据给定的训练模式,按照“模式的顺传播”→“误差逆传播”→“记忆训练”→“学习收敛”4个过程进行网络权值的训练。在网络的工作阶段,根据训练好的网络权值及给定的输入向量,按照“模式顺传播”方式求得与输入向量相对应的输出向量的解答(阎平凡,2000)。

BP算法是一种比较成熟的有指导的训练方法,是一个单向传播的多层前馈网络。它包含输入层、隐含层、输出层,如图4-4所示。

图4-4 地下水质量评价的BP神经网络模型

图4-4给出了4层地下水水质评价的BP神经网络模型。同层节点之间不连接。输入信号从输入层节点,依次传过各隐含层节点,然后传到输出层节点,如果在输出层得不到期望输出,则转入反向传播,将误差信号沿原来通路返回,通过学习来修改各层神经元的权值,使误差信号最小。每一层节点的输出只影响下一层节点的输入。每个节点都对应着一个作用函数(f)和阈值(a),BP网络的基本处理单元量为非线性输入-输出的关系,输入层节点阈值为0,且f(x)=x;而隐含层和输出层的作用函数为非线性的Sigmoid型(它是连续可微的)函数,其表达式为

f(x)=1/(1+e-x) (4-55)

设有L个学习样本(Xk,Ok)(k=1,2,…,l),其中Xk为输入,Ok为期望输出,Xk经网络传播后得到的实际输出为Yk,则Yk与要求的期望输出Ok之间的均方误差为

区域地下水功能可持续性评价理论与方法研究

式中:M为输出层单元数;Yk,p为第k样本对第p特性分量的实际输出;Ok,p为第k样本对第p特性分量的期望输出。

样本的总误差为

区域地下水功能可持续性评价理论与方法研究

由梯度下降法修改网络的权值,使得E取得最小值,学习样本对Wij的修正为

区域地下水功能可持续性评价理论与方法研究

式中:η为学习速率,可取0到1间的数值。

所有学习样本对权值Wij的修正为

区域地下水功能可持续性评价理论与方法研究

通常为增加学习过程的稳定性,用下式对Wij再进行修正:

区域地下水功能可持续性评价理论与方法研究

式中:β为充量常量;Wij(t)为BP网络第t次迭代循环训练后的连接权值;Wij(t-1)为BP网络第t-1次迭代循环训练后的连接权值。

在BP网络学习的过程中,先调整输出层与隐含层之间的连接权值,然后调整中间隐含层间的连接权值,最后调整隐含层与输入层之间的连接权值。实现BP网络训练学习程序流程,如图4-5所示(倪深海等,2000)。

图4-5 BP神经网络模型程序框图

若将水质评价中的评价标准作为样本输入,评价级别作为网络输出,BP网络通过不断学习,归纳出评价标准与评价级别间复杂的内在对应关系,即可进行水质综合评价。

BP网络对地下水质量综合评价,其评价方法不需要过多的数理统计知识,也不需要对水质量监测数据进行复杂的预处理,操作简便易行,评价结果切合实际。由于人工神经网络方法具有高度民主的非线性函数映射功能,使得地下水水质评价结果较准确(袁曾任,1999)。

BP网络可以任意逼近任何连续函数,但是它主要存在如下缺点:①从数学上看,它可归结为一非线性的梯度优化问题,因此不可避免地存在局部极小问题;②学习算法的收敛速度慢,通常需要上千次或更多。

神经网络具有学习、联想和容错功能,是地下水水质评价工作方法的改进,如何在现行的神经网络中进一步吸取模糊和灰色理论的某些优点,建立更适合水质评价的神经网络模型,使该模型既具有方法的先进性又具有现实的可行性,将是我们今后研究和探讨的问题。

你可能感兴趣的:(神经网络,神经网络,深度学习,人工智能)