CUHK Occlusion Dataset(行人检测数据集)转换为YOLO+VOC数据集

目录

 

一、引语

 二、准备工作

三、Seq文件转JPEG 

四、VBB转XML

五、把刚刚照片与xml一一对应

 六、VOC数据集制作

七、结语


一、引语

最近想用YOLO训练一个行人检测的模型,找到了CUHK Occlusion Datase 这个数据集,但这个数据集想要用YOLO训练的话,涉及到Seq文件转JPEG和VBB文件转XML,花了一下午时间在网上查资料,整理了一下供大家参考,参考文章链接在文末。

 二、准备工作

1.首先新建⼀个set00⽂件夹,将所有.seq⽂件都放进去;

2.把解压后的label⽂件夹更名为Annotations,下⾯是调整过的⽂件夹: 

 3.在Annotations⽂件夹中同样新建⼀个set00⽂件夹,将所有.vbb⽂件放⼊,如下:

CUHK Occlusion Dataset(行人检测数据集)转换为YOLO+VOC数据集_第1张图片

三、Seq文件转JPEG 

# -*- coding:utf-8 -*-
import os.path
import fnmatch
import shutil


def open_save(file, savepath):
    # 读入一个seq文件,然后拆分成image存入savepath当中
    f = open(file, 'rb')
    # 将seq文件的内容转化成str类型
    string = f.read().decode('latin-1')

    # splitstring是图片的前缀,可以理解成seq是以splitstring为分隔的多个jpg合成的文件
    splitstring = "\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x46"
    # split函数做一个测试,因此返回结果的第一个是在seq文件中是空,因此后面省略掉第一个
    """
    >>> a = ".12121.3223.4343"
    >>> a.split('.')
    ['', '12121', '3223', '4343']
    """
    strlist = string.split(splitstring)
    # print(strlist)
    # print('######################################')
    f.close()
    count = 0
    # delete the image folder path if it exists
    if os.path.exists(savepath):
        shutil.rmtree(savepath)
        # create the image folder path
    if not os.path.exists(savepath):
        os.makedirs(savepath)
    # 遍历每一个jpg文件内容,然后加上前缀合成图片
    for img in strlist:
        filename = str(count) + '.jpg'
        filenamewithpath = os.path.join(savepath, filename)
        if count > 0:
            i = open(filenamewithpath, 'wb+')
            i.write(splitstring.encode('latin-1'))
            i.write(img.encode('latin-1'))
            i.close()
        count = count + 1


if __name__ == "__main__":
    rootdir = "D:/BaiduNetdiskDownload/行人检测/46_CUHK Occlusion Dataset"
    saveroot = "C:/Users/杨鑫兴/Desktop/VOCdevkit/JPEG"

    for parent, dirnames, filenames in os.walk(rootdir):
        for filename in filenames:
            if fnmatch.fnmatch(filename, '*.seq'):
                thefilename = os.path.join(parent, filename)
                thesavepath = saveroot + '/' + parent.split('/')[-1] + '/' + filename.split('.')[0] + '/'
                print("Filename=" + thefilename)
                print("Savepath=" + thesavepath)
                open_save(thefilename, thesavepath)

这里只需要修改两个路径

rootdir是你刚刚新建的set00和Annotations所在的文件夹路径

saveroot是你存放转好的JPEG的位置(自己创建一个文件夹存放即可)

效果如图:

CUHK Occlusion Dataset(行人检测数据集)转换为YOLO+VOC数据集_第2张图片

四、VBB转XML

# -*- coding:utf-8 -*-
import os, glob
import cv2
from scipy.io import loadmat
from collections import defaultdict
import numpy as np
from lxml import etree,objectify




def vbb_anno2dict(vbb_file, cam_id):
    # 通过os.path.basename获得路径的最后部分“文件名.扩展名”
    # 通过os.path.splitext获得文件名
    filename = os.path.splitext(os.path.basename(vbb_file))[0]

    # 定义字典对象annos
    annos = defaultdict(dict)
    vbb = loadmat(vbb_file)
    # object info in each frame: id, pos, occlusion, lock, posv
    objLists = vbb['A'][0][0][1][0]
    objLbl = [str(v[0]) for v in vbb['A'][0][0][4][0]]  # 可查看所有类别
    # person index
    person_index_list = np.where(np.array(objLbl) == "person")[0]  # 只选取类别为‘person’的xml
    for frame_id, obj in enumerate(objLists):
        if len(obj) > 0:
            frame_name = str(cam_id) + "_" + str(filename) + "_" + str(frame_id + 1) + ".jpg"
            annos[frame_name] = defaultdict(list)
            annos[frame_name]["id"] = frame_name
            annos[frame_name]["label"] = "person"
            for id, pos, occl in zip(obj['id'][0], obj['pos'][0], obj['occl'][0]):
                id = int(id[0][0]) - 1  # for matlab start from 1 not 0
                if not id in person_index_list:  # only use bbox whose label is person
                    continue
                pos = pos[0].tolist()
                occl = int(occl[0][0])
                annos[frame_name]["occlusion"].append(occl)
                annos[frame_name]["bbox"].append(pos)
            if not annos[frame_name]["bbox"]:
                del annos[frame_name]
    print(annos)
    return annos


def seq2img(annos, seq_file, outdir, cam_id):
    cap = cv2.VideoCapture(seq_file)
    index = 1
    # captured frame list
    v_id = os.path.splitext(os.path.basename(seq_file))[0]
    cap_frames_index = np.sort([int(os.path.splitext(id)[0].split("_")[2]) for id in annos.keys()])
    while True:
        ret, frame = cap.read()
        print(ret)
        if ret:
            if not index in cap_frames_index:
                index += 1
                continue
            if not os.path.exists(outdir):
                os.makedirs(outdir)
            outname = os.path.join(outdir, str(cam_id) + "_" + v_id + "_" + str(index) + ".jpg")
            print("Current frame: ", v_id, str(index))
            cv2.imwrite(outname, frame)
            height, width, _ = frame.shape
        else:
            break
        index += 1
    img_size = (width, height)
    return img_size


def instance2xml_base(anno, bbox_type='xyxy'):
    """bbox_type: xyxy (xmin, ymin, xmax, ymax); xywh (xmin, ymin, width, height)"""
    assert bbox_type in ['xyxy', 'xywh']
    E = objectify.ElementMaker(annotate=False)
    anno_tree = E.annotation(
        E.folder('VOC2014_instance/person'),
        E.filename(anno['id']),
        E.source(
            E.database('Caltech pedestrian'),
            E.annotation('Caltech pedestrian'),
            E.image('Caltech pedestrian'),
            E.url('None')
        ),
        E.size(
            E.width(640),
            E.height(480),
            E.depth(3)
        ),
        E.segmented(0),
    )
    for index, bbox in enumerate(anno['bbox']):
        bbox = [float(x) for x in bbox]
        if bbox_type == 'xyxy':
            xmin, ymin, w, h = bbox
            xmax = xmin + w
            ymax = ymin + h
        else:
            xmin, ymin, xmax, ymax = bbox
        E = objectify.ElementMaker(annotate=False)
        anno_tree.append(
            E.object(
                E.name(anno['label']),
                E.bndbox(
                    E.xmin(xmin),
                    E.ymin(ymin),
                    E.xmax(xmax),
                    E.ymax(ymax)
                ),
                E.difficult(0),
                E.occlusion(anno["occlusion"][index])
            )
        )
    return anno_tree


def parse_anno_file(vbb_inputdir, vbb_outputdir):
    # annotation sub-directories in hda annotation input directory
    assert os.path.exists(vbb_inputdir)
    sub_dirs = os.listdir(vbb_inputdir)  # 对应set00,set01...
    for sub_dir in sub_dirs:
        print("Parsing annotations of camera: ", sub_dir)
        cam_id = sub_dir
        # 获取某一个子set下面的所有vbb文件
        vbb_files = glob.glob(os.path.join(vbb_inputdir, sub_dir, "*.vbb"))
        for vbb_file in vbb_files:
            # 返回一个vbb文件中所有的帧的标注结果

            annos = vbb_anno2dict(vbb_file, cam_id)

            if annos:
                # 组成xml文件的存储文件夹,形如“/Users/chenguanghao/Desktop/Caltech/xmlresult/”
                vbb_outdir = vbb_outputdir

                # 如果不存在
                if not os.path.exists(vbb_outdir):
                    os.makedirs(vbb_outdir)

                for filename, anno in sorted(annos.items(), key=lambda x: x[0]):
                    if "bbox" in anno:
                        anno_tree = instance2xml_base(anno)
                        outfile = os.path.join(vbb_outdir, os.path.splitext(filename)[0] + ".xml")
                        print("Generating annotation xml file of picture: ", filename)
                        # 生成最终的xml文件,对应一张图片
                        etree.ElementTree(anno_tree).write(outfile, pretty_print=True)


def visualize_bbox(xml_file, img_file):
    import cv2
    tree = etree.parse(xml_file)
    # load image
    image = cv2.imread(img_file)
    origin = cv2.imread(img_file)
    # 获取一张图片的所有bbox
    for bbox in tree.xpath('//bndbox'):
        coord = []
        for corner in bbox.getchildren():
            coord.append(int(float(corner.text)))
        print(coord)
        cv2.rectangle(image, (coord[0], coord[1]), (coord[2], coord[3]), (0, 0, 255), 2)
    # visualize image
    cv2.imshow("test", image)
    cv2.imshow('origin', origin)
    cv2.waitKey(0)


def main():
    vbb_inputdir = r"C:\Users\杨鑫兴\Desktop\Annotations"
    vbb_outputdir = r"C:\Users\杨鑫兴\Desktop\VOCdevkit\Annotations"
    parse_anno_file(vbb_inputdir, vbb_outputdir)

    """
    下面这段是测试代码
    """

    """
    xml_file = "/Users/chenguanghao/Desktop/Caltech/xmlresult/set07/bbox/set07_V000_4.xml"
    img_file = "/Users/chenguanghao/Desktop/Caltech/JPEG/set07/V000/4.jpg"
    visualize_bbox(xml_file, img_file)
    """


if __name__ == "__main__":
    main()

这里只需要改两个路径

 vbb_inputdir是你开始时解压label压缩包时创建的Annotations文件夹路径

vbb_outputdir是存放转好的XML数据文件夹的路径(自己创建一个即可)

效果如图:

CUHK Occlusion Dataset(行人检测数据集)转换为YOLO+VOC数据集_第3张图片

五、把刚刚照片与xml一一对应

import ntpath
import os
import glob
import shutil


imgpathin=r'C:\Users\杨鑫兴\Desktop\VOCdevkit\JPEG'
imgout=r'C:\Users\杨鑫兴\Desktop\VOCdevkit\JPEGlmages'
for subdir in os.listdir(imgpathin):
    print(subdir)
    file_path=os.path.join(imgpathin,subdir)
    for subdir1 in os.listdir(file_path):
        print(subdir1)
        file_path1=os.path.join(file_path,subdir1)
        for jpg_file in os.listdir(file_path1):
            src=os.path.join(file_path1,jpg_file)
            new_name=str(subdir+"_"+subdir1+"_"+jpg_file)
            dst=os.path.join(imgout,new_name)
            os.rename(src,dst)

同样这里也需要修改两个路径

imgpathin是你刚刚存放JPEG文件夹的路径

imgout是存放修改后图片文件夹的路径(创建一个即可)

效果如下:

 六、VOC数据集制作

这个直接看这位博主的博客:VOC数据集具体格式_北漠苍狼1746430162的博客-CSDN博客

七、结语

 这篇文章我没有什么技术上的创新,我做的只是把自己花时间查的资料整合了一下,希望可以帮到大家,至于数据集,我查资料的时候发现作者把网盘链接删了,不知道什么原因,需要的私信或者留言我,最后感谢这些参考博客的作者

 VOC数据集具体格式_北漠苍狼1746430162的博客-CSDN博客

 CUHKOcclusionDataset数据集转换为yolo格式,并划分测试集和训练集 - 百度文库 (baidu.com)

(写的比较详细,大家可以看一下,对我帮助很大,唯一的缺点就是代码没有办法复制(百度文库嘛))

你可能感兴趣的:(日志,目标检测,计算机视觉,深度学习)