Python pandas库|任凭弱水三千,我只取一瓢饮(2)

上一篇链接:

Python pandas库|任凭弱水三千,我只取一瓢饮(2)_Hann Yang的博客-CSDN博客

I~Q:  Function10~25

Types['Function'][9:25]
['infer_freq', 'interval_range', 'isna', 'isnull', 'json_normalize', 'lreshape', 'melt', 'merge', 'merge_asof', 'merge_ordered', 'notna', 'notnull', 'period_range', 'pivot', 'pivot_table', 'qcut']

Function10

infer_freq(index, warn: 'bool' = True) -> 'str | None'

Help on function infer_freq in module pandas.tseries.frequencies:

infer_freq(index, warn: 'bool' = True) -> 'str | None'
    Infer the most likely frequency given the input index. If the frequency is
    uncertain, a warning will be printed.
    
    Parameters
    ----------
    index : DatetimeIndex or TimedeltaIndex
      If passed a Series will use the values of the series (NOT THE INDEX).
    warn : bool, default True
    
    Returns
    -------
    str or None
        None if no discernible frequency.
    
    Raises
    ------
    TypeError
        If the index is not datetime-like.
    ValueError
        If there are fewer than three values.
    
    Examples
    --------
    >>> idx = pd.date_range(start='2020/12/01', end='2020/12/30', periods=30)
    >>> pd.infer_freq(idx)
    'D'

Function11

interval_range(start=None, end=None, periods=None, freq=None, name: 'Hashable' = None, closed='right') -> 'IntervalIndex'

Help on function interval_range in module pandas.core.indexes.interval:

interval_range(start=None, end=None, periods=None, freq=None, name: 'Hashable' = None, closed='right') -> 'IntervalIndex'
    Return a fixed frequency IntervalIndex.
    
    Parameters
    ----------
    start : numeric or datetime-like, default None
        Left bound for generating intervals.
    end : numeric or datetime-like, default None
        Right bound for generating intervals.
    periods : int, default None
        Number of periods to generate.
    freq : numeric, str, or DateOffset, default None
        The length of each interval. Must be consistent with the type of start
        and end, e.g. 2 for numeric, or '5H' for datetime-like.  Default is 1
        for numeric and 'D' for datetime-like.
    name : str, default None
        Name of the resulting IntervalIndex.
    closed : {'left', 'right', 'both', 'neither'}, default 'right'
        Whether the intervals are closed on the left-side, right-side, both
        or neither.
    
    Returns
    -------
    IntervalIndex
    
    See Also
    --------
    IntervalIndex : An Index of intervals that are all closed on the same side.
    
    Notes
    -----
    Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
    exactly three must be specified. If ``freq`` is omitted, the resulting
    ``IntervalIndex`` will have ``periods`` linearly spaced elements between
    ``start`` and ``end``, inclusively.
    
    To learn more about datetime-like frequency strings, please see `this link
    `__.
    
    Examples
    --------
    Numeric ``start`` and  ``end`` is supported.
    
    >>> pd.interval_range(start=0, end=5)
    IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
                  dtype='interval[int64, right]')
    
    Additionally, datetime-like input is also supported.
    
    >>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
    ...                   end=pd.Timestamp('2017-01-04'))
    IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03],
                   (2017-01-03, 2017-01-04]],
                  dtype='interval[datetime64[ns], right]')
    
    The ``freq`` parameter specifies the frequency between the left and right.
    endpoints of the individual intervals within the ``IntervalIndex``.  For
    numeric ``start`` and ``end``, the frequency must also be numeric.
    
    >>> pd.interval_range(start=0, periods=4, freq=1.5)
    IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
                  dtype='interval[float64, right]')
    
    Similarly, for datetime-like ``start`` and ``end``, the frequency must be
    convertible to a DateOffset.
    
    >>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
    ...                   periods=3, freq='MS')
    IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01],
                   (2017-03-01, 2017-04-01]],
                  dtype='interval[datetime64[ns], right]')
    
    Specify ``start``, ``end``, and ``periods``; the frequency is generated
    automatically (linearly spaced).
    
    >>> pd.interval_range(start=0, end=6, periods=4)
    IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
              dtype='interval[float64, right]')
    
    The ``closed`` parameter specifies which endpoints of the individual
    intervals within the ``IntervalIndex`` are closed.
    
    >>> pd.interval_range(end=5, periods=4, closed='both')
    IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]],
                  dtype='interval[int64, both]')

Function12、13

isna(obj)、isnull(obj)  两者用法相同,即同一函数的别称

Help on function isna in module pandas.core.dtypes.missing:

isna(obj)
    Detect missing values for an array-like object.
    
    This function takes a scalar or array-like object and indicates
    whether values are missing (``NaN`` in numeric arrays, ``None`` or ``NaN``
    in object arrays, ``NaT`` in datetimelike).
    
    Parameters
    ----------
    obj : scalar or array-like
        Object to check for null or missing values.
    
    Returns
    -------
    bool or array-like of bool
        For scalar input, returns a scalar boolean.
        For array input, returns an array of boolean indicating whether each
        corresponding element is missing.
    
    See Also
    --------
    notna : Boolean inverse of pandas.isna.
    Series.isna : Detect missing values in a Series.
    DataFrame.isna : Detect missing values in a DataFrame.
    Index.isna : Detect missing values in an Index.
    
    Examples
    --------
    Scalar arguments (including strings) result in a scalar boolean.
    
    >>> pd.isna('dog')
    False
    
    >>> pd.isna(pd.NA)
    True
    
    >>> pd.isna(np.nan)
    True
    
    ndarrays result in an ndarray of booleans.
    
    >>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]])
    >>> array
    array([[ 1., nan,  3.],
           [ 4.,  5., nan]])
    >>> pd.isna(array)
    array([[False,  True, False],
           [False, False,  True]])
    
    For indexes, an ndarray of booleans is returned.
    
    >>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None,
    ...                           "2017-07-08"])
    >>> index
    DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'],
                  dtype='datetime64[ns]', freq=None)
    >>> pd.isna(index)
    array([False, False,  True, False])
    
    For Series and DataFrame, the same type is returned, containing booleans.
    
    >>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']])
    >>> df
         0     1    2
    0  ant   bee  cat
    1  dog  None  fly
    >>> pd.isna(df)
           0      1      2
    0  False  False  False
    1  False   True  False
    
    >>> pd.isna(df[1])
    0    False
    1     True
    Name: 1, dtype: bool

Function14

json_normalize(data: 'dict | list[dict]', record_path: 'str | list | None' = None, meta: 'str | list[str | list[str]] | None' = None, meta_prefix: 'str | None' = None, record_prefix: 'str | None' = None, errors: 'str' = 'raise', sep: 'str' = '.', max_level: 'int | None' = None) -> 'DataFrame'

Help on function _json_normalize in module pandas.io.json._normalize:

_json_normalize(data: 'dict | list[dict]', record_path: 'str | list | None' = None, meta: 'str | list[str | list[str]] | None' = None, meta_prefix: 'str | None' = None, record_prefix: 'str | None' = None, errors: 'str' = 'raise', sep: 'str' = '.', max_level: 'int | None' = None) -> 'DataFrame'
    Normalize semi-structured JSON data into a flat table.
    
    Parameters
    ----------
    data : dict or list of dicts
        Unserialized JSON objects.
    record_path : str or list of str, default None
        Path in each object to list of records. If not passed, data will be
        assumed to be an array of records.
    meta : list of paths (str or list of str), default None
        Fields to use as metadata for each record in resulting table.
    meta_prefix : str, default None
        If True, prefix records with dotted (?) path, e.g. foo.bar.field if
        meta is ['foo', 'bar'].
    record_prefix : str, default None
        If True, prefix records with dotted (?) path, e.g. foo.bar.field if
        path to records is ['foo', 'bar'].
    errors : {'raise', 'ignore'}, default 'raise'
        Configures error handling.
    
        * 'ignore' : will ignore KeyError if keys listed in meta are not
          always present.
        * 'raise' : will raise KeyError if keys listed in meta are not
          always present.
    sep : str, default '.'
        Nested records will generate names separated by sep.
        e.g., for sep='.', {'foo': {'bar': 0}} -> foo.bar.
    max_level : int, default None
        Max number of levels(depth of dict) to normalize.
        if None, normalizes all levels.
    
        .. versionadded:: 0.25.0
    
    Returns
    -------
    frame : DataFrame
    Normalize semi-structured JSON data into a flat table.
    
    Examples
    --------
    >>> data = [
    ...     {"id": 1, "name": {"first": "Coleen", "last": "Volk"}},
    ...     {"name": {"given": "Mark", "family": "Regner"}},
    ...     {"id": 2, "name": "Faye Raker"},
    ... ]
    >>> pd.json_normalize(data)
        id name.first name.last name.given name.family        name
    0  1.0     Coleen      Volk        NaN         NaN         NaN
    1  NaN        NaN       NaN       Mark      Regner         NaN
    2  2.0        NaN       NaN        NaN         NaN  Faye Raker
    
    >>> data = [
    ...     {
    ...         "id": 1,
    ...         "name": "Cole Volk",
    ...         "fitness": {"height": 130, "weight": 60},
    ...     },
    ...     {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}},
    ...     {
    ...         "id": 2,
    ...         "name": "Faye Raker",
    ...         "fitness": {"height": 130, "weight": 60},
    ...     },
    ... ]
    >>> pd.json_normalize(data, max_level=0)
        id        name                        fitness
    0  1.0   Cole Volk  {'height': 130, 'weight': 60}
    1  NaN    Mark Reg  {'height': 130, 'weight': 60}
    2  2.0  Faye Raker  {'height': 130, 'weight': 60}
    
    Normalizes nested data up to level 1.
    
    >>> data = [
    ...     {
    ...         "id": 1,
    ...         "name": "Cole Volk",
    ...         "fitness": {"height": 130, "weight": 60},
    ...     },
    ...     {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}},
    ...     {
    ...         "id": 2,
    ...         "name": "Faye Raker",
    ...         "fitness": {"height": 130, "weight": 60},
    ...     },
    ... ]
    >>> pd.json_normalize(data, max_level=1)
        id        name  fitness.height  fitness.weight
    0  1.0   Cole Volk             130              60
    1  NaN    Mark Reg             130              60
    2  2.0  Faye Raker             130              60
    
    >>> data = [
    ...     {
    ...         "state": "Florida",
    ...         "shortname": "FL",
    ...         "info": {"governor": "Rick Scott"},
    ...         "counties": [
    ...             {"name": "Dade", "population": 12345},
    ...             {"name": "Broward", "population": 40000},
    ...             {"name": "Palm Beach", "population": 60000},
    ...         ],
    ...     },
    ...     {
    ...         "state": "Ohio",
    ...         "shortname": "OH",
    ...         "info": {"governor": "John Kasich"},
    ...         "counties": [
    ...             {"name": "Summit", "population": 1234},
    ...             {"name": "Cuyahoga", "population": 1337},
    ...         ],
    ...     },
    ... ]
    >>> result = pd.json_normalize(
    ...     data, "counties", ["state", "shortname", ["info", "governor"]]
    ... )
    >>> result
             name  population    state shortname info.governor
    0        Dade       12345   Florida    FL    Rick Scott
    1     Broward       40000   Florida    FL    Rick Scott
    2  Palm Beach       60000   Florida    FL    Rick Scott
    3      Summit        1234   Ohio       OH    John Kasich
    4    Cuyahoga        1337   Ohio       OH    John Kasich
    
    >>> data = {"A": [1, 2]}
    >>> pd.json_normalize(data, "A", record_prefix="Prefix.")
        Prefix.0
    0          1
    1          2
    
    Returns normalized data with columns prefixed with the given string.

​​​​​​​Function15

lreshape(data: 'DataFrame', groups, dropna: 'bool' = True, label=None) -> 'DataFrame'

Help on function lreshape in module pandas.core.reshape.melt:

lreshape(data: 'DataFrame', groups, dropna: 'bool' = True, label=None) -> 'DataFrame'
    Reshape wide-format data to long. Generalized inverse of DataFrame.pivot.
    
    Accepts a dictionary, ``groups``, in which each key is a new column name
    and each value is a list of old column names that will be "melted" under
    the new column name as part of the reshape.
    
    Parameters
    ----------
    data : DataFrame
        The wide-format DataFrame.
    groups : dict
        {new_name : list_of_columns}.
    dropna : bool, default True
        Do not include columns whose entries are all NaN.
    label : None
        Not used.
    
        .. deprecated:: 1.0.0
    
    Returns
    -------
    DataFrame
        Reshaped DataFrame.
    
    See Also
    --------
    melt : Unpivot a DataFrame from wide to long format, optionally leaving
        identifiers set.
    pivot : Create a spreadsheet-style pivot table as a DataFrame.
    DataFrame.pivot : Pivot without aggregation that can handle
        non-numeric data.
    DataFrame.pivot_table : Generalization of pivot that can handle
        duplicate values for one index/column pair.
    DataFrame.unstack : Pivot based on the index values instead of a
        column.
    wide_to_long : Wide panel to long format. Less flexible but more
        user-friendly than melt.
    
    Examples
    --------
    >>> data = pd.DataFrame({'hr1': [514, 573], 'hr2': [545, 526],
    ...                      'team': ['Red Sox', 'Yankees'],
    ...                      'year1': [2007, 2007], 'year2': [2008, 2008]})
    >>> data
       hr1  hr2     team  year1  year2
    0  514  545  Red Sox   2007   2008
    1  573  526  Yankees   2007   2008
    
    >>> pd.lreshape(data, {'year': ['year1', 'year2'], 'hr': ['hr1', 'hr2']})
          team  year   hr
    0  Red Sox  2007  514
    1  Yankees  2007  573
    2  Red Sox  2008  545
    3  Yankees  2008  526

​​​​​​​Function16

melt(frame: 'DataFrame', id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None, ignore_index: 'bool' = True) -> 'DataFrame'

Help on function melt in module pandas.core.reshape.melt:

melt(frame: 'DataFrame', id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None, ignore_index: 'bool' = True) -> 'DataFrame'
    Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.
    
    This function is useful to massage a DataFrame into a format where one
    or more columns are identifier variables (`id_vars`), while all other
    columns, considered measured variables (`value_vars`), are "unpivoted" to
    the row axis, leaving just two non-identifier columns, 'variable' and
    'value'.
    
    Parameters
    ----------
    id_vars : tuple, list, or ndarray, optional
        Column(s) to use as identifier variables.
    value_vars : tuple, list, or ndarray, optional
        Column(s) to unpivot. If not specified, uses all columns that
        are not set as `id_vars`.
    var_name : scalar
        Name to use for the 'variable' column. If None it uses
        ``frame.columns.name`` or 'variable'.
    value_name : scalar, default 'value'
        Name to use for the 'value' column.
    col_level : int or str, optional
        If columns are a MultiIndex then use this level to melt.
    ignore_index : bool, default True
        If True, original index is ignored. If False, the original index is retained.
        Index labels will be repeated as necessary.
    
        .. versionadded:: 1.1.0
    
    Returns
    -------
    DataFrame
        Unpivoted DataFrame.
    
    See Also
    --------
    DataFrame.melt : Identical method.
    pivot_table : Create a spreadsheet-style pivot table as a DataFrame.
    DataFrame.pivot : Return reshaped DataFrame organized
        by given index / column values.
    DataFrame.explode : Explode a DataFrame from list-like
            columns to long format.
    
    Examples
    --------
    >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'},
    ...                    'B': {0: 1, 1: 3, 2: 5},
    ...                    'C': {0: 2, 1: 4, 2: 6}})
    >>> df
       A  B  C
    0  a  1  2
    1  b  3  4
    2  c  5  6
    
    >>> pd.melt(df, id_vars=['A'], value_vars=['B'])
       A variable  value
    0  a        B      1
    1  b        B      3
    2  c        B      5
    
    >>> pd.melt(df, id_vars=['A'], value_vars=['B', 'C'])
       A variable  value
    0  a        B      1
    1  b        B      3
    2  c        B      5
    3  a        C      2
    4  b        C      4
    5  c        C      6
    
    The names of 'variable' and 'value' columns can be customized:
    
    >>> pd.melt(df, id_vars=['A'], value_vars=['B'],
    ...         var_name='myVarname', value_name='myValname')
       A myVarname  myValname
    0  a         B          1
    1  b         B          3
    2  c         B          5
    
    Original index values can be kept around:
    
    >>> pd.melt(df, id_vars=['A'], value_vars=['B', 'C'], ignore_index=False)
       A variable  value
    0  a        B      1
    1  b        B      3
    2  c        B      5
    0  a        C      2
    1  b        C      4
    2  c        C      6
    
    If you have multi-index columns:
    
    >>> df.columns = [list('ABC'), list('DEF')]
    >>> df
       A  B  C
       D  E  F
    0  a  1  2
    1  b  3  4
    2  c  5  6
    
    >>> pd.melt(df, col_level=0, id_vars=['A'], value_vars=['B'])
       A variable  value
    0  a        B      1
    1  b        B      3
    2  c        B      5
    
    >>> pd.melt(df, id_vars=[('A', 'D')], value_vars=[('B', 'E')])
      (A, D) variable_0 variable_1  value
    0      a          B          E      1
    1      b          B          E      3
    2      c          B          E      5

​​​​​​​Function17

merge(left: 'DataFrame | Series', right: 'DataFrame | Series', how: 'str' = 'inner', on: 'IndexLabel | None' = None, left_on: 'IndexLabel | None' = None, right_on: 'IndexLabel | None' = None, left_index: 'bool' = False, right_index: 'bool' = False, sort: 'bool' = False, suffixes: 'Suffixes' = ('_x', '_y'), copy: 'bool' = True, indicator: 'bool' = False, validate: 'str | None' = None) -> 'DataFrame'

Help on function merge in module pandas.core.reshape.merge:

merge(left: 'DataFrame | Series', right: 'DataFrame | Series', how: 'str' = 'inner', on: 'IndexLabel | None' = None, left_on: 'IndexLabel | None' = None, right_on: 'IndexLabel | None' = None, left_index: 'bool' = False, right_index: 'bool' = False, sort: 'bool' = False, suffixes: 'Suffixes' = ('_x', '_y'), copy: 'bool' = True, indicator: 'bool' = False, validate: 'str | None' = None) -> 'DataFrame'
    Merge DataFrame or named Series objects with a database-style join.
    
    A named Series object is treated as a DataFrame with a single named column.
    
    The join is done on columns or indexes. If joining columns on
    columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes
    on indexes or indexes on a column or columns, the index will be passed on.
    When performing a cross merge, no column specifications to merge on are
    allowed.
    
    Parameters
    ----------
    left : DataFrame
    right : DataFrame or named Series
        Object to merge with.
    how : {'left', 'right', 'outer', 'inner', 'cross'}, default 'inner'
        Type of merge to be performed.
    
        * left: use only keys from left frame, similar to a SQL left outer join;
          preserve key order.
        * right: use only keys from right frame, similar to a SQL right outer join;
          preserve key order.
        * outer: use union of keys from both frames, similar to a SQL full outer
          join; sort keys lexicographically.
        * inner: use intersection of keys from both frames, similar to a SQL inner
          join; preserve the order of the left keys.
        * cross: creates the cartesian product from both frames, preserves the order
          of the left keys.
    
          .. versionadded:: 1.2.0
    
    on : label or list
        Column or index level names to join on. These must be found in both
        DataFrames. If `on` is None and not merging on indexes then this defaults
        to the intersection of the columns in both DataFrames.
    left_on : label or list, or array-like
        Column or index level names to join on in the left DataFrame. Can also
        be an array or list of arrays of the length of the left DataFrame.
        These arrays are treated as if they are columns.
    right_on : label or list, or array-like
        Column or index level names to join on in the right DataFrame. Can also
        be an array or list of arrays of the length of the right DataFrame.
        These arrays are treated as if they are columns.
    left_index : bool, default False
        Use the index from the left DataFrame as the join key(s). If it is a
        MultiIndex, the number of keys in the other DataFrame (either the index
        or a number of columns) must match the number of levels.
    right_index : bool, default False
        Use the index from the right DataFrame as the join key. Same caveats as
        left_index.
    sort : bool, default False
        Sort the join keys lexicographically in the result DataFrame. If False,
        the order of the join keys depends on the join type (how keyword).
    suffixes : list-like, default is ("_x", "_y")
        A length-2 sequence where each element is optionally a string
        indicating the suffix to add to overlapping column names in
        `left` and `right` respectively. Pass a value of `None` instead
        of a string to indicate that the column name from `left` or
        `right` should be left as-is, with no suffix. At least one of the
        values must not be None.
    copy : bool, default True
        If False, avoid copy if possible.
    indicator : bool or str, default False
        If True, adds a column to the output DataFrame called "_merge" with
        information on the source of each row. The column can be given a different
        name by providing a string argument. The column will have a Categorical
        type with the value of "left_only" for observations whose merge key only
        appears in the left DataFrame, "right_only" for observations
        whose merge key only appears in the right DataFrame, and "both"
        if the observation's merge key is found in both DataFrames.
    
    validate : str, optional
        If specified, checks if merge is of specified type.
    
        * "one_to_one" or "1:1": check if merge keys are unique in both
          left and right datasets.
        * "one_to_many" or "1:m": check if merge keys are unique in left
          dataset.
        * "many_to_one" or "m:1": check if merge keys are unique in right
          dataset.
        * "many_to_many" or "m:m": allowed, but does not result in checks.
    
    Returns
    -------
    DataFrame
        A DataFrame of the two merged objects.
    
    See Also
    --------
    merge_ordered : Merge with optional filling/interpolation.
    merge_asof : Merge on nearest keys.
    DataFrame.join : Similar method using indices.
    
    Notes
    -----
    Support for specifying index levels as the `on`, `left_on`, and
    `right_on` parameters was added in version 0.23.0
    Support for merging named Series objects was added in version 0.24.0
    
    Examples
    --------
    >>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'],
    ...                     'value': [1, 2, 3, 5]})
    >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],
    ...                     'value': [5, 6, 7, 8]})
    >>> df1
        lkey value
    0   foo      1
    1   bar      2
    2   baz      3
    3   foo      5
    >>> df2
        rkey value
    0   foo      5
    1   bar      6
    2   baz      7
    3   foo      8
    
    Merge df1 and df2 on the lkey and rkey columns. The value columns have
    the default suffixes, _x and _y, appended.
    
    >>> df1.merge(df2, left_on='lkey', right_on='rkey')
      lkey  value_x rkey  value_y
    0  foo        1  foo        5
    1  foo        1  foo        8
    2  foo        5  foo        5
    3  foo        5  foo        8
    4  bar        2  bar        6
    5  baz        3  baz        7
    
    Merge DataFrames df1 and df2 with specified left and right suffixes
    appended to any overlapping columns.
    
    >>> df1.merge(df2, left_on='lkey', right_on='rkey',
    ...           suffixes=('_left', '_right'))
      lkey  value_left rkey  value_right
    0  foo           1  foo            5
    1  foo           1  foo            8
    2  foo           5  foo            5
    3  foo           5  foo            8
    4  bar           2  bar            6
    5  baz           3  baz            7
    
    Merge DataFrames df1 and df2, but raise an exception if the DataFrames have
    any overlapping columns.
    
    >>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False))
    Traceback (most recent call last):
    ...
    ValueError: columns overlap but no suffix specified:
        Index(['value'], dtype='object')
    
    >>> df1 = pd.DataFrame({'a': ['foo', 'bar'], 'b': [1, 2]})
    >>> df2 = pd.DataFrame({'a': ['foo', 'baz'], 'c': [3, 4]})
    >>> df1
          a  b
    0   foo  1
    1   bar  2
    >>> df2
          a  c
    0   foo  3
    1   baz  4
    
    >>> df1.merge(df2, how='inner', on='a')
          a  b  c
    0   foo  1  3
    
    >>> df1.merge(df2, how='left', on='a')
          a  b  c
    0   foo  1  3.0
    1   bar  2  NaN
    
    >>> df1 = pd.DataFrame({'left': ['foo', 'bar']})
    >>> df2 = pd.DataFrame({'right': [7, 8]})
    >>> df1
        left
    0   foo
    1   bar
    >>> df2
        right
    0   7
    1   8
    
    >>> df1.merge(df2, how='cross')
       left  right
    0   foo      7
    1   foo      8
    2   bar      7
    3   bar      8

​​​​​​​Function18

merge_asof(left: 'DataFrame | Series', right: 'DataFrame | Series', on: 'IndexLabel | None' = None, left_on: 'IndexLabel | None' = None, right_on: 'IndexLabel | None' = None, left_index: 'bool' = False, right_index: 'bool' = False, by=None, left_by=None, right_by=None, suffixes: 'Suffixes' = ('_x', '_y'), tolerance=None, allow_exact_matches: 'bool' = True, direction: 'str' = 'backward') -> 'DataFrame'

Help on function merge_asof in module pandas.core.reshape.merge:

merge_asof(left: 'DataFrame | Series', right: 'DataFrame | Series', on: 'IndexLabel | None' = None, left_on: 'IndexLabel | None' = None, right_on: 'IndexLabel | None' = None, left_index: 'bool' = False, right_index: 'bool' = False, by=None, left_by=None, right_by=None, suffixes: 'Suffixes' = ('_x', '_y'), tolerance=None, allow_exact_matches: 'bool' = True, direction: 'str' = 'backward') -> 'DataFrame'
    Perform an asof merge.
    
    This is similar to a left-join except that we match on nearest
    key rather than equal keys. Both DataFrames must be sorted by the key.
    
    For each row in the left DataFrame:
    
      - A "backward" search selects the last row in the right DataFrame whose
        'on' key is less than or equal to the left's key.
    
      - A "forward" search selects the first row in the right DataFrame whose
        'on' key is greater than or equal to the left's key.
    
      - A "nearest" search selects the row in the right DataFrame whose 'on'
        key is closest in absolute distance to the left's key.
    
    The default is "backward" and is compatible in versions below 0.20.0.
    The direction parameter was added in version 0.20.0 and introduces
    "forward" and "nearest".
    
    Optionally match on equivalent keys with 'by' before searching with 'on'.
    
    Parameters
    ----------
    left : DataFrame or named Series
    right : DataFrame or named Series
    on : label
        Field name to join on. Must be found in both DataFrames.
        The data MUST be ordered. Furthermore this must be a numeric column,
        such as datetimelike, integer, or float. On or left_on/right_on
        must be given.
    left_on : label
        Field name to join on in left DataFrame.
    right_on : label
        Field name to join on in right DataFrame.
    left_index : bool
        Use the index of the left DataFrame as the join key.
    right_index : bool
        Use the index of the right DataFrame as the join key.
    by : column name or list of column names
        Match on these columns before performing merge operation.
    left_by : column name
        Field names to match on in the left DataFrame.
    right_by : column name
        Field names to match on in the right DataFrame.
    suffixes : 2-length sequence (tuple, list, ...)
        Suffix to apply to overlapping column names in the left and right
        side, respectively.
    tolerance : int or Timedelta, optional, default None
        Select asof tolerance within this range; must be compatible
        with the merge index.
    allow_exact_matches : bool, default True
    
        - If True, allow matching with the same 'on' value
          (i.e. less-than-or-equal-to / greater-than-or-equal-to)
        - If False, don't match the same 'on' value
          (i.e., strictly less-than / strictly greater-than).
    
    direction : 'backward' (default), 'forward', or 'nearest'
        Whether to search for prior, subsequent, or closest matches.
    
    Returns
    -------
    merged : DataFrame
    
    See Also
    --------
    merge : Merge with a database-style join.
    merge_ordered : Merge with optional filling/interpolation.
    
    Examples
    --------
    >>> left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]})
    >>> left
        a left_val
    0   1        a
    1   5        b
    2  10        c
    
    >>> right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]})
    >>> right
       a  right_val
    0  1          1
    1  2          2
    2  3          3
    3  6          6
    4  7          7
    
    >>> pd.merge_asof(left, right, on="a")
        a left_val  right_val
    0   1        a          1
    1   5        b          3
    2  10        c          7
    
    >>> pd.merge_asof(left, right, on="a", allow_exact_matches=False)
        a left_val  right_val
    0   1        a        NaN
    1   5        b        3.0
    2  10        c        7.0
    
    >>> pd.merge_asof(left, right, on="a", direction="forward")
        a left_val  right_val
    0   1        a        1.0
    1   5        b        6.0
    2  10        c        NaN
    
    >>> pd.merge_asof(left, right, on="a", direction="nearest")
        a left_val  right_val
    0   1        a          1
    1   5        b          6
    2  10        c          7
    
    We can use indexed DataFrames as well.
    
    >>> left = pd.DataFrame({"left_val": ["a", "b", "c"]}, index=[1, 5, 10])
    >>> left
       left_val
    1         a
    5         b
    10        c
    
    >>> right = pd.DataFrame({"right_val": [1, 2, 3, 6, 7]}, index=[1, 2, 3, 6, 7])
    >>> right
       right_val
    1          1
    2          2
    3          3
    6          6
    7          7
    
    >>> pd.merge_asof(left, right, left_index=True, right_index=True)
       left_val  right_val
    1         a          1
    5         b          3
    10        c          7
    
    Here is a real-world times-series example
    
    >>> quotes = pd.DataFrame(
    ...     {
    ...         "time": [
    ...             pd.Timestamp("2016-05-25 13:30:00.023"),
    ...             pd.Timestamp("2016-05-25 13:30:00.023"),
    ...             pd.Timestamp("2016-05-25 13:30:00.030"),
    ...             pd.Timestamp("2016-05-25 13:30:00.041"),
    ...             pd.Timestamp("2016-05-25 13:30:00.048"),
    ...             pd.Timestamp("2016-05-25 13:30:00.049"),
    ...             pd.Timestamp("2016-05-25 13:30:00.072"),
    ...             pd.Timestamp("2016-05-25 13:30:00.075")
    ...         ],
    ...         "ticker": [
    ...                "GOOG",
    ...                "MSFT",
    ...                "MSFT",
    ...                "MSFT",
    ...                "GOOG",
    ...                "AAPL",
    ...                "GOOG",
    ...                "MSFT"
    ...            ],
    ...            "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01],
    ...            "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03]
    ...     }
    ... )
    >>> quotes
                         time ticker     bid     ask
    0 2016-05-25 13:30:00.023   GOOG  720.50  720.93
    1 2016-05-25 13:30:00.023   MSFT   51.95   51.96
    2 2016-05-25 13:30:00.030   MSFT   51.97   51.98
    3 2016-05-25 13:30:00.041   MSFT   51.99   52.00
    4 2016-05-25 13:30:00.048   GOOG  720.50  720.93
    5 2016-05-25 13:30:00.049   AAPL   97.99   98.01
    6 2016-05-25 13:30:00.072   GOOG  720.50  720.88
    7 2016-05-25 13:30:00.075   MSFT   52.01   52.03
    
    >>> trades = pd.DataFrame(
    ...        {
    ...            "time": [
    ...                pd.Timestamp("2016-05-25 13:30:00.023"),
    ...                pd.Timestamp("2016-05-25 13:30:00.038"),
    ...                pd.Timestamp("2016-05-25 13:30:00.048"),
    ...                pd.Timestamp("2016-05-25 13:30:00.048"),
    ...                pd.Timestamp("2016-05-25 13:30:00.048")
    ...            ],
    ...            "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
    ...            "price": [51.95, 51.95, 720.77, 720.92, 98.0],
    ...            "quantity": [75, 155, 100, 100, 100]
    ...        }
    ...    )
    >>> trades
                         time ticker   price  quantity
    0 2016-05-25 13:30:00.023   MSFT   51.95        75
    1 2016-05-25 13:30:00.038   MSFT   51.95       155
    2 2016-05-25 13:30:00.048   GOOG  720.77       100
    3 2016-05-25 13:30:00.048   GOOG  720.92       100
    4 2016-05-25 13:30:00.048   AAPL   98.00       100
    
    By default we are taking the asof of the quotes
    
    >>> pd.merge_asof(trades, quotes, on="time", by="ticker")
                         time ticker   price  quantity     bid     ask
    0 2016-05-25 13:30:00.023   MSFT   51.95        75   51.95   51.96
    1 2016-05-25 13:30:00.038   MSFT   51.95       155   51.97   51.98
    2 2016-05-25 13:30:00.048   GOOG  720.77       100  720.50  720.93
    3 2016-05-25 13:30:00.048   GOOG  720.92       100  720.50  720.93
    4 2016-05-25 13:30:00.048   AAPL   98.00       100     NaN     NaN
    
    We only asof within 2ms between the quote time and the trade time
    
    >>> pd.merge_asof(
    ...     trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("2ms")
    ... )
                         time ticker   price  quantity     bid     ask
    0 2016-05-25 13:30:00.023   MSFT   51.95        75   51.95   51.96
    1 2016-05-25 13:30:00.038   MSFT   51.95       155     NaN     NaN
    2 2016-05-25 13:30:00.048   GOOG  720.77       100  720.50  720.93
    3 2016-05-25 13:30:00.048   GOOG  720.92       100  720.50  720.93
    4 2016-05-25 13:30:00.048   AAPL   98.00       100     NaN     NaN
    
    We only asof within 10ms between the quote time and the trade time
    and we exclude exact matches on time. However *prior* data will
    propagate forward
    
    >>> pd.merge_asof(
    ...     trades,
    ...     quotes,
    ...     on="time",
    ...     by="ticker",
    ...     tolerance=pd.Timedelta("10ms"),
    ...     allow_exact_matches=False
    ... )
                         time ticker   price  quantity     bid     ask
    0 2016-05-25 13:30:00.023   MSFT   51.95        75     NaN     NaN
    1 2016-05-25 13:30:00.038   MSFT   51.95       155   51.97   51.98
    2 2016-05-25 13:30:00.048   GOOG  720.77       100     NaN     NaN
    3 2016-05-25 13:30:00.048   GOOG  720.92       100     NaN     NaN
    4 2016-05-25 13:30:00.048   AAPL   98.00       100     NaN     NaN

​​​​​​​Function19

merge_ordered(left: 'DataFrame', right: 'DataFrame', on: 'IndexLabel | None' = None, left_on: 'IndexLabel | None' = None, right_on: 'IndexLabel | None' = None, left_by=None, right_by=None, fill_method: 'str | None' = None, suffixes: 'Suffixes' = ('_x', '_y'), how: 'str' = 'outer') -> 'DataFrame'

Help on function merge_ordered in module pandas.core.reshape.merge:

merge_ordered(left: 'DataFrame', right: 'DataFrame', on: 'IndexLabel | None' = None, left_on: 'IndexLabel | None' = None, right_on: 'IndexLabel | None' = None, left_by=None, right_by=None, fill_method: 'str | None' = None, suffixes: 'Suffixes' = ('_x', '_y'), how: 'str' = 'outer') -> 'DataFrame'
    Perform merge with optional filling/interpolation.
    
    Designed for ordered data like time series data. Optionally
    perform group-wise merge (see examples).
    
    Parameters
    ----------
    left : DataFrame
    right : DataFrame
    on : label or list
        Field names to join on. Must be found in both DataFrames.
    left_on : label or list, or array-like
        Field names to join on in left DataFrame. Can be a vector or list of
        vectors of the length of the DataFrame to use a particular vector as
        the join key instead of columns.
    right_on : label or list, or array-like
        Field names to join on in right DataFrame or vector/list of vectors per
        left_on docs.
    left_by : column name or list of column names
        Group left DataFrame by group columns and merge piece by piece with
        right DataFrame.
    right_by : column name or list of column names
        Group right DataFrame by group columns and merge piece by piece with
        left DataFrame.
    fill_method : {'ffill', None}, default None
        Interpolation method for data.
    suffixes : list-like, default is ("_x", "_y")
        A length-2 sequence where each element is optionally a string
        indicating the suffix to add to overlapping column names in
        `left` and `right` respectively. Pass a value of `None` instead
        of a string to indicate that the column name from `left` or
        `right` should be left as-is, with no suffix. At least one of the
        values must not be None.
    
        .. versionchanged:: 0.25.0
    how : {'left', 'right', 'outer', 'inner'}, default 'outer'
        * left: use only keys from left frame (SQL: left outer join)
        * right: use only keys from right frame (SQL: right outer join)
        * outer: use union of keys from both frames (SQL: full outer join)
        * inner: use intersection of keys from both frames (SQL: inner join).
    
    Returns
    -------
    DataFrame
        The merged DataFrame output type will the be same as
        'left', if it is a subclass of DataFrame.
    
    See Also
    --------
    merge : Merge with a database-style join.
    merge_asof : Merge on nearest keys.
    
    Examples
    --------
    >>> df1 = pd.DataFrame(
    ...     {
    ...         "key": ["a", "c", "e", "a", "c", "e"],
    ...         "lvalue": [1, 2, 3, 1, 2, 3],
    ...         "group": ["a", "a", "a", "b", "b", "b"]
    ...     }
    ... )
    >>> df1
          key  lvalue group
    0   a       1     a
    1   c       2     a
    2   e       3     a
    3   a       1     b
    4   c       2     b
    5   e       3     b
    
    >>> df2 = pd.DataFrame({"key": ["b", "c", "d"], "rvalue": [1, 2, 3]})
    >>> df2
          key  rvalue
    0   b       1
    1   c       2
    2   d       3
    
    >>> merge_ordered(df1, df2, fill_method="ffill", left_by="group")
      key  lvalue group  rvalue
    0   a       1     a     NaN
    1   b       1     a     1.0
    2   c       2     a     2.0
    3   d       2     a     3.0
    4   e       3     a     3.0
    5   a       1     b     NaN
    6   b       1     b     1.0
    7   c       2     b     2.0
    8   d       2     b     3.0
    9   e       3     b     3.0

​​​​​​​Function20、21

notna(obj)、notnull(obj)

Help on function notna in module pandas.core.dtypes.missing:

notna(obj)
    Detect non-missing values for an array-like object.
    
    This function takes a scalar or array-like object and indicates
    whether values are valid (not missing, which is ``NaN`` in numeric
    arrays, ``None`` or ``NaN`` in object arrays, ``NaT`` in datetimelike).
    
    Parameters
    ----------
    obj : array-like or object value
        Object to check for *not* null or *non*-missing values.
    
    Returns
    -------
    bool or array-like of bool
        For scalar input, returns a scalar boolean.
        For array input, returns an array of boolean indicating whether each
        corresponding element is valid.
    
    See Also
    --------
    isna : Boolean inverse of pandas.notna.
    Series.notna : Detect valid values in a Series.
    DataFrame.notna : Detect valid values in a DataFrame.
    Index.notna : Detect valid values in an Index.
    
    Examples
    --------
    Scalar arguments (including strings) result in a scalar boolean.
    
    >>> pd.notna('dog')
    True
    
    >>> pd.notna(pd.NA)
    False
    
    >>> pd.notna(np.nan)
    False
    
    ndarrays result in an ndarray of booleans.
    
    >>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]])
    >>> array
    array([[ 1., nan,  3.],
           [ 4.,  5., nan]])
    >>> pd.notna(array)
    array([[ True, False,  True],
           [ True,  True, False]])
    
    For indexes, an ndarray of booleans is returned.
    
    >>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None,
    ...                          "2017-07-08"])
    >>> index
    DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'],
                  dtype='datetime64[ns]', freq=None)
    >>> pd.notna(index)
    array([ True,  True, False,  True])
    
    For Series and DataFrame, the same type is returned, containing booleans.
    
    >>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']])
    >>> df
         0     1    2
    0  ant   bee  cat
    1  dog  None  fly
    >>> pd.notna(df)
          0      1     2
    0  True   True  True
    1  True  False  True
    
    >>> pd.notna(df[1])
    0     True
    1    False
    Name: 1, dtype: bool

​​​​​​​Function22

period_range(start=None, end=None, periods: 'int | None' = None, freq=None, name=None) -> 'PeriodIndex'

Help on function period_range in module pandas.core.indexes.period:

period_range(start=None, end=None, periods: 'int | None' = None, freq=None, name=None) -> 'PeriodIndex'
    Return a fixed frequency PeriodIndex.
    
    The day (calendar) is the default frequency.
    
    Parameters
    ----------
    start : str or period-like, default None
        Left bound for generating periods.
    end : str or period-like, default None
        Right bound for generating periods.
    periods : int, default None
        Number of periods to generate.
    freq : str or DateOffset, optional
        Frequency alias. By default the freq is taken from `start` or `end`
        if those are Period objects. Otherwise, the default is ``"D"`` for
        daily frequency.
    name : str, default None
        Name of the resulting PeriodIndex.
    
    Returns
    -------
    PeriodIndex
    
    Notes
    -----
    Of the three parameters: ``start``, ``end``, and ``periods``, exactly two
    must be specified.
    
    To learn more about the frequency strings, please see `this link
    `__.
    
    Examples
    --------
    >>> pd.period_range(start='2017-01-01', end='2018-01-01', freq='M')
    PeriodIndex(['2017-01', '2017-02', '2017-03', '2017-04', '2017-05', '2017-06',
             '2017-07', '2017-08', '2017-09', '2017-10', '2017-11', '2017-12',
             '2018-01'],
            dtype='period[M]')
    
    If ``start`` or ``end`` are ``Period`` objects, they will be used as anchor
    endpoints for a ``PeriodIndex`` with frequency matching that of the
    ``period_range`` constructor.
    
    >>> pd.period_range(start=pd.Period('2017Q1', freq='Q'),
    ...                 end=pd.Period('2017Q2', freq='Q'), freq='M')
    PeriodIndex(['2017-03', '2017-04', '2017-05', '2017-06'],
                dtype='period[M]')

​​​​​​​Function23

pivot(data: 'DataFrame', index: 'IndexLabel | None' = None, columns: 'IndexLabel | None' = None, values: 'IndexLabel | None' = None) -> 'DataFrame'

Help on function pivot in module pandas.core.reshape.pivot:

pivot(data: 'DataFrame', index: 'IndexLabel | None' = None, columns: 'IndexLabel | None' = None, values: 'IndexLabel | None' = None) -> 'DataFrame'
    Return reshaped DataFrame organized by given index / column values.
    
    Reshape data (produce a "pivot" table) based on column values. Uses
    unique values from specified `index` / `columns` to form axes of the
    resulting DataFrame. This function does not support data
    aggregation, multiple values will result in a MultiIndex in the
    columns. See the :ref:`User Guide ` for more on reshaping.
    
    Parameters
    ----------
    data : DataFrame
    index : str or object or a list of str, optional
        Column to use to make new frame's index. If None, uses
        existing index.
    
        .. versionchanged:: 1.1.0
           Also accept list of index names.
    
    columns : str or object or a list of str
        Column to use to make new frame's columns.
    
        .. versionchanged:: 1.1.0
           Also accept list of columns names.
    
    values : str, object or a list of the previous, optional
        Column(s) to use for populating new frame's values. If not
        specified, all remaining columns will be used and the result will
        have hierarchically indexed columns.
    
    Returns
    -------
    DataFrame
        Returns reshaped DataFrame.
    
    Raises
    ------
    ValueError:
        When there are any `index`, `columns` combinations with multiple
        values. `DataFrame.pivot_table` when you need to aggregate.
    
    See Also
    --------
    DataFrame.pivot_table : Generalization of pivot that can handle
        duplicate values for one index/column pair.
    DataFrame.unstack : Pivot based on the index values instead of a
        column.
    wide_to_long : Wide panel to long format. Less flexible but more
        user-friendly than melt.
    
    Notes
    -----
    For finer-tuned control, see hierarchical indexing documentation along
    with the related stack/unstack methods.
    
    Examples
    --------
    >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two',
    ...                            'two'],
    ...                    'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
    ...                    'baz': [1, 2, 3, 4, 5, 6],
    ...                    'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
    >>> df
        foo   bar  baz  zoo
    0   one   A    1    x
    1   one   B    2    y
    2   one   C    3    z
    3   two   A    4    q
    4   two   B    5    w
    5   two   C    6    t
    
    >>> df.pivot(index='foo', columns='bar', values='baz')
    bar  A   B   C
    foo
    one  1   2   3
    two  4   5   6
    
    >>> df.pivot(index='foo', columns='bar')['baz']
    bar  A   B   C
    foo
    one  1   2   3
    two  4   5   6
    
    >>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo'])
          baz       zoo
    bar   A  B  C   A  B  C
    foo
    one   1  2  3   x  y  z
    two   4  5  6   q  w  t
    
    You could also assign a list of column names or a list of index names.
    
    >>> df = pd.DataFrame({
    ...        "lev1": [1, 1, 1, 2, 2, 2],
    ...        "lev2": [1, 1, 2, 1, 1, 2],
    ...        "lev3": [1, 2, 1, 2, 1, 2],
    ...        "lev4": [1, 2, 3, 4, 5, 6],
    ...        "values": [0, 1, 2, 3, 4, 5]})
    >>> df
        lev1 lev2 lev3 lev4 values
    0   1    1    1    1    0
    1   1    1    2    2    1
    2   1    2    1    3    2
    3   2    1    2    4    3
    4   2    1    1    5    4
    5   2    2    2    6    5
    
    >>> df.pivot(index="lev1", columns=["lev2", "lev3"],values="values")
    lev2    1         2
    lev3    1    2    1    2
    lev1
    1     0.0  1.0  2.0  NaN
    2     4.0  3.0  NaN  5.0
    
    >>> df.pivot(index=["lev1", "lev2"], columns=["lev3"],values="values")
          lev3    1    2
    lev1  lev2
       1     1  0.0  1.0
             2  2.0  NaN
       2     1  4.0  3.0
             2  NaN  5.0
    
    A ValueError is raised if there are any duplicates.
    
    >>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'],
    ...                    "bar": ['A', 'A', 'B', 'C'],
    ...                    "baz": [1, 2, 3, 4]})
    >>> df
       foo bar  baz
    0  one   A    1
    1  one   A    2
    2  two   B    3
    3  two   C    4
    
    Notice that the first two rows are the same for our `index`
    and `columns` arguments.
    
    >>> df.pivot(index='foo', columns='bar', values='baz')
    Traceback (most recent call last):
       ...
    ValueError: Index contains duplicate entries, cannot reshape

​​​​​​​Function24

pivot_table(data: 'DataFrame', values=None, index=None, columns=None, aggfunc: 'AggFuncType' = 'mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False, sort=True) -> 'DataFrame'

Help on function pivot_table in module pandas.core.reshape.pivot:

pivot_table(data: 'DataFrame', values=None, index=None, columns=None, aggfunc: 'AggFuncType' = 'mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False, sort=True) -> 'DataFrame'
    Create a spreadsheet-style pivot table as a DataFrame.
    
    The levels in the pivot table will be stored in MultiIndex objects
    (hierarchical indexes) on the index and columns of the result DataFrame.
    
    Parameters
    ----------
    data : DataFrame
    values : column to aggregate, optional
    index : column, Grouper, array, or list of the previous
        If an array is passed, it must be the same length as the data. The
        list can contain any of the other types (except list).
        Keys to group by on the pivot table index.  If an array is passed,
        it is being used as the same manner as column values.
    columns : column, Grouper, array, or list of the previous
        If an array is passed, it must be the same length as the data. The
        list can contain any of the other types (except list).
        Keys to group by on the pivot table column.  If an array is passed,
        it is being used as the same manner as column values.
    aggfunc : function, list of functions, dict, default numpy.mean
        If list of functions passed, the resulting pivot table will have
        hierarchical columns whose top level are the function names
        (inferred from the function objects themselves)
        If dict is passed, the key is column to aggregate and value
        is function or list of functions.
    fill_value : scalar, default None
        Value to replace missing values with (in the resulting pivot table,
        after aggregation).
    margins : bool, default False
        Add all row / columns (e.g. for subtotal / grand totals).
    dropna : bool, default True
        Do not include columns whose entries are all NaN.
    margins_name : str, default 'All'
        Name of the row / column that will contain the totals
        when margins is True.
    observed : bool, default False
        This only applies if any of the groupers are Categoricals.
        If True: only show observed values for categorical groupers.
        If False: show all values for categorical groupers.
    
        .. versionchanged:: 0.25.0
    
    sort : bool, default True
        Specifies if the result should be sorted.
    
        .. versionadded:: 1.3.0
    
    Returns
    -------
    DataFrame
        An Excel style pivot table.
    
    See Also
    --------
    DataFrame.pivot : Pivot without aggregation that can handle
        non-numeric data.
    DataFrame.melt: Unpivot a DataFrame from wide to long format,
        optionally leaving identifiers set.
    wide_to_long : Wide panel to long format. Less flexible but more
        user-friendly than melt.
    
    Examples
    --------
    >>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo",
    ...                          "bar", "bar", "bar", "bar"],
    ...                    "B": ["one", "one", "one", "two", "two",
    ...                          "one", "one", "two", "two"],
    ...                    "C": ["small", "large", "large", "small",
    ...                          "small", "large", "small", "small",
    ...                          "large"],
    ...                    "D": [1, 2, 2, 3, 3, 4, 5, 6, 7],
    ...                    "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]})
    >>> df
         A    B      C  D  E
    0  foo  one  small  1  2
    1  foo  one  large  2  4
    2  foo  one  large  2  5
    3  foo  two  small  3  5
    4  foo  two  small  3  6
    5  bar  one  large  4  6
    6  bar  one  small  5  8
    7  bar  two  small  6  9
    8  bar  two  large  7  9
    
    This first example aggregates values by taking the sum.
    
    >>> table = pd.pivot_table(df, values='D', index=['A', 'B'],
    ...                     columns=['C'], aggfunc=np.sum)
    >>> table
    C        large  small
    A   B
    bar one    4.0    5.0
        two    7.0    6.0
    foo one    4.0    1.0
        two    NaN    6.0
    
    We can also fill missing values using the `fill_value` parameter.
    
    >>> table = pd.pivot_table(df, values='D', index=['A', 'B'],
    ...                     columns=['C'], aggfunc=np.sum, fill_value=0)
    >>> table
    C        large  small
    A   B
    bar one      4      5
        two      7      6
    foo one      4      1
        two      0      6
    
    The next example aggregates by taking the mean across multiple columns.
    
    >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'],
    ...                     aggfunc={'D': np.mean,
    ...                              'E': np.mean})
    >>> table
                    D         E
    A   C
    bar large  5.500000  7.500000
        small  5.500000  8.500000
    foo large  2.000000  4.500000
        small  2.333333  4.333333
    
    We can also calculate multiple types of aggregations for any given
    value column.
    
    >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'],
    ...                     aggfunc={'D': np.mean,
    ...                              'E': [min, max, np.mean]})
    >>> table
                    D    E
                mean  max      mean  min
    A   C
    bar large  5.500000  9.0  7.500000  6.0
        small  5.500000  9.0  8.500000  8.0
    foo large  2.000000  5.0  4.500000  4.0
        small  2.333333  6.0  4.333333  2.0

​​​​​​​Function25

qcut(x, q, labels=None, retbins: bool = False, precision: int = 3, duplicates: str = 'raise')

Help on function qcut in module pandas.core.reshape.tile:

qcut(x, q, labels=None, retbins: bool = False, precision: int = 3, duplicates: str = 'raise')
    Quantile-based discretization function.
    
    Discretize variable into equal-sized buckets based on rank or based
    on sample quantiles. For example 1000 values for 10 quantiles would
    produce a Categorical object indicating quantile membership for each data point.
    
    Parameters
    ----------
    x : 1d ndarray or Series
    q : int or list-like of float
        Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately
        array of quantiles, e.g. [0, .25, .5, .75, 1.] for quartiles.
    labels : array or False, default None
        Used as labels for the resulting bins. Must be of the same length as
        the resulting bins. If False, return only integer indicators of the
        bins. If True, raises an error.
    retbins : bool, optional
        Whether to return the (bins, labels) or not. Can be useful if bins
        is given as a scalar.
    precision : int, optional
        The precision at which to store and display the bins labels.
    duplicates : {default 'raise', 'drop'}, optional
        If bin edges are not unique, raise ValueError or drop non-uniques.
    
    Returns
    -------
    out : Categorical or Series or array of integers if labels is False
        The return type (Categorical or Series) depends on the input: a Series
        of type category if input is a Series else Categorical. Bins are
        represented as categories when categorical data is returned.
    bins : ndarray of floats
        Returned only if `retbins` is True.
    
    Notes
    -----
    Out of bounds values will be NA in the resulting Categorical object
    
    Examples
    --------
    >>> pd.qcut(range(5), 4)
    ... # doctest: +ELLIPSIS
    [(-0.001, 1.0], (-0.001, 1.0], (1.0, 2.0], (2.0, 3.0], (3.0, 4.0]]
    Categories (4, interval[float64, right]): [(-0.001, 1.0] < (1.0, 2.0] ...
    
    >>> pd.qcut(range(5), 3, labels=["good", "medium", "bad"])
    ... # doctest: +SKIP
    [good, good, medium, bad, bad]
    Categories (3, object): [good < medium < bad]
    
    >>> pd.qcut(range(5), 4, labels=False)
    array([0, 0, 1, 2, 3])


​​​​待续......

下一篇链接:

https://blog.csdn.net/boysoft2002/article/details/128428569

你可能感兴趣的:(Python,#,Python,学习笔记,python,pandas)