使用pytorch搭建Lenet网络,并使用MNIST数据集进行训练,在测试集上能够实现99%以上的正确率。
实现代码可供参考:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
# LeNet-5能达到98%的准确率
print(torch.__version__)
Batch_Size = 256
EPOCH = 20
Learning_rate = 0.01
DEVICE = torch.device('cuda:0')
print(DEVICE)
# 1.加载数据
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./dataset', train=True, download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=Batch_Size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./dataset', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=Batch_Size, shuffle=True)
# 2.定义网络
class AlexNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0)
self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0)
self.fc1 = nn.Linear(256, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x): # x: [B, 1, 28, 28]
insize = x.size(0) # insize = B
x = self.conv1(x) # x: [B, 6, 24, 24]
x = F.relu(F.avg_pool2d(x, 2, 2)) # x: [B, 6, 12, 12]
x = self.conv2(x) # x: [B, 16, 8, 8]
x = F.relu(F.avg_pool2d(x, 2, 2)) # x: [B, 16, 4, 4]
x = x.view(insize, -1) # x: [B, 256]
x = F.relu(self.fc1(x)) # x: [B, 120]
x = F.relu(self.fc2(x)) # x: [B, 84]
x = F.relu(self.fc3(x)) # x: [B, 10]
return x
# 3.定义网络和优化器
model = AlexNet().to(DEVICE)
optimizer = optim.SGD(model.parameters(), lr=Learning_rate, momentum=0.9)
criten = nn.CrossEntropyLoss().to(DEVICE)
# 4.训练模型
for epoch in range(EPOCH):
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(DEVICE), target.to(DEVICE)
output = model(data)
optimizer.zero_grad()
loss = criten(output, target)
loss.backward()
optimizer.step()
if (batch_idx + 1) % 30 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
# 每个EPOCH测试准确率
correct = 0
test_loss = 0
for data, target in test_loader:
data, target = data.to(DEVICE), target.to(DEVICE) # data: [B, 1, 32, 32] target: [B, 10]
output = model(data)
loss = criten(output, target)
test_loss += loss.item()
pred = output.argmax(dim=1) # pred: [B]
correct += pred.eq(target.data).sum()
test_loss /= len(test_loader.dataset)
print('test loss:{:.4f}, acc:{}/{} ({:.2f}%)'.format(
test_loss, correct, len(test_loader.dataset), 100 * correct // len(test_loader.dataset)
))
网络结论如下图所示:
值得注意的地方在于,当使用pytorch包中的television导入MNIST数据集时,其中每张输入图像大小为2828,而非原论文提到的3232。因此本文使用的最后全连接层的第一层不是[batch_size, 1655],而是[batch_size, 1644]。(也尝试过将第一个卷积层改为padding=2以保持维度不变,但效果不佳)。