以 2-Layers-Neural Network 为例,其结构如下。
该神经网络有两层,仅有一层为隐藏层。输入相应的数据 X = { X 1 , X 2 , ⋯ , X f } X=\{X_1,X_2,\cdots,X_f\} X={X1,X2,⋯,Xf},输出为对应标签 Y Y Y
神经网络的梯度下降(Gradient descent)更新步骤基本为:
Step 1 | Step 2 | Step 3 | Step 4 |
---|---|---|---|
Forward Propagation | 计算Cost Function | Back Propagation | 更新参数W,b |
表格描述的是一个epoch的步骤,需要不停的重复Step 1~4, 需经过多个epochs直到Cost Function 收敛
其第一层(隐藏层)由 $ h $ 个神经元(隐藏单元)构成, 每个神经元的都要经过两部计算:
同理, 只需要改变一下对应的下角标, Z 2 [ 1 ] ∼ Z h [ 1 ] , A 2 [ 1 ] ∼ A h [ 1 ] Z_2^{[1]} \sim Z_h^{[1]},A_2^{[1]} \sim A_h^{[1]} Z2[1]∼Zh[1],A2[1]∼Ah[1] 也能被计算出来。
此时,第一层神经元的输出为 A [ 1 ] = { A 1 [ 1 ] , A 2 [ 1 ] , ⋯ , A h [ 1 ] } A^{[1]} = \{A_1^{[1]},A_2^{[1]},\cdots, A_h^{[1]}\} A[1]={A1[1],A2[1],⋯,Ah[1]}
接下来进行下一层的计算:
此时, A 1 [ 2 ] A_1^{[2]} A1[2] 为模型生成的一个0~1之间的数字,需要利用一定的阈值使得其能变为标签值 Y ∈ { 0 , 1 } Y \in \{0,1\} Y∈{0,1}
if {A2 < 0.5}:
Y = 0
else:
Y = 1
由于第二层只有一个神经元,因此本文中 $Z_1^{[2]} $ 和 $Z^{[2]} $ 代表相同含义
[ Z [ 1 ] = W [ 1 ] ⋅ X + b [ 1 ] A [ 1 ] = σ ( Z [ 1 ] ) Z [ 2 ] = W [ 2 ] A [ 1 ] + b [ 2 ] A [ 2 ] = σ ( Z [ 2 ] ) \left[ \begin{array}{rl} Z^{[1]} & =W^{[1]} \cdot X+b^{[1]} \\ A^{[1]} & =\sigma\left(Z^{[1]}\right) \\ Z^{[2]} & =W^{[2]} A^{[1]}+b^{[2]} \\ A^{[2]} & =\sigma\left(Z^{[2]}\right) \end{array}\right. ⎣⎢⎢⎡Z[1]A[1]Z[2]A[2]=W[1]⋅X+b[1]=σ(Z[1])=W[2]A[1]+b[2]=σ(Z[2])
Cost Function是对于每一个样本的 Loss 函数的平均值,计算如下:
C o s t F u n c t i o n : J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) = − 1 m ∑ i = 1 m [ ( y ( i ) log ( y ^ ( i ) ) + ( 1 − y ( i ) ) log ( 1 − y ^ ( i ) ) ] \begin{aligned} Cost \ Function: J(w, b) &=\frac{1}{m} \sum_{i=1}^{m} L\left(\hat{y}^{(i)}, y^{(i)}\right)\\ &=-\frac{1}{m} \sum_{i=1}^{m}\left[\left(y^{(i)} \log \left(\hat{y}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right]\right. \end{aligned} Cost Function:J(w,b)=m1i=1∑mL(y^(i),y(i))=−m1i=1∑m[(y(i)log(y^(i))+(1−y(i))log(1−y^(i))]
其中, y ^ ( i ) = A [ 2 ] ( i ) \hat{y}^{(i)} = A^{[2](i)} y^(i)=A[2](i),及第二层第 i i i 个 sample.
Back Propagation 是基于Chain Theory的梯度计算方法。其输出为W,b参数的梯度,以实现参数更新。
梯度下降的参数更新为:
W ← W − α ∂ J ( W , b ) ∂ W , b ← b − α ∂ J ( W , b ) ∂ b W \leftarrow W-\alpha\frac{\partial J(W,b)}{\partial W}, \ \ b \leftarrow b-\alpha\frac{\partial J(W,b)}{\partial b} W←W−α∂W∂J(W,b), b←b−α∂b∂J(W,b)
α : l e a r n i n g r a t e \alpha: learning \ rate α:learning rate 学习率小更新慢,反之则快。
因此,如果要更新 W 和 b,则需要计算对应的梯度。
由Forward Propagation知道,我么们需要计算的梯度由:
∂ J ( W , b ) ∂ W [ 2 ] , ∂ J ( W , b ) ∂ W [ 1 ] , ∂ J ( W , b ) ∂ b [ 2 ] , ∂ J ( W , b ) ∂ b [ 1 ] \frac{\partial J(W,b)}{\partial W^{[2]}}, \ \frac{\partial J(W,b)}{\partial W^{[1]}}, \ \frac{\partial J(W,b)}{\partial b^{[2]}}, \ \frac{\partial J(W,b)}{\partial b^{[1]}} \ ∂W[2]∂J(W,b), ∂W[1]∂J(W,b), ∂b[2]∂J(W,b), ∂b[1]∂J(W,b)
则其计算如下:
∂ J ( W , b ) ∂ W [ 2 ] = d J d Z [ 2 ] d Z [ 2 ] d W [ 2 ] \frac{\partial J(W,b)}{\partial W^{[2]}} =\frac{dJ}{dZ^{[2]}}\frac{dZ^{[2]}}{d W^{[2]}} ∂W[2]∂J(W,b)=dZ[2]dJdW[2]dZ[2]
其中后面一项可以直接求解:
因为 Z [ 2 ] = W [ 2 ] A [ 1 ] + b [ 2 ] Z^{[2]} =W^{[2]} A^{[1]}+b^{[2]} Z[2]=W[2]A[1]+b[2]
所以 d Z [ 2 ] d W [ 2 ] = 1 m A [ 1 ] T \frac{dZ^{[2]}}{d W^{[2]}} = \frac{1}{m}A^{[1]T} dW[2]dZ[2]=m1A[1]T
因此只需要求 d J d Z [ 2 ] \frac{dJ}{dZ^{[2]}} dZ[2]dJ.利用 Chain Theory 可得:
d J d Z [ 2 ] = d J d A [ 2 ] d A [ 2 ] d Z [ 2 ] = A [ 2 ] − Y \frac{dJ}{dZ^{[2]}} = \frac{dJ}{dA^{[2]}}\frac{dA^{[2]}}{dZ^{[2]}} = A^{[2]} - Y dZ[2]dJ=dA[2]dJdZ[2]dA[2]=A[2]−Y
则 ∂ J ( W , b ) ∂ W [ 2 ] = ( A [ 2 ] − Y ) × 1 m A [ 1 ] T \frac{\partial J(W,b)}{\partial W^{[2]}} = (A^{[2]}-Y)\times \frac{1}{m}A^{[1]T} ∂W[2]∂J(W,b)=(A[2]−Y)×m1A[1]T
推导1: 求证下面等式 d Z [ 2 ] d W [ 2 ] = 1 m A [ 1 ] T \frac{dZ^{[2]}}{d W^{[2]}} = \frac{1}{m}A^{[1]T} dW[2]dZ[2]=m1A[1]T
- 如何理解 d Z [ 2 ] d W [ 2 ] \frac{dZ^{[2]}}{d W^{[2]}} dW[2]dZ[2] 的维度问题?
Z [ 2 ] = W [ 2 ] A [ 1 ] + b [ 2 ] Z^{[2]} =W^{[2]} A^{[1]}+b^{[2]} Z[2]=W[2]A[1]+b[2]
其中 A [ 1 ] ∈ R h × m A^{[1]} \in \mathbb{R}^{h \times m} A[1]∈Rh×m, Z [ 2 ] ∈ R 1 × m Z^{[2]} \in \mathbb{R}^{1 \times m} Z[2]∈R1×m
, W [ 2 ] ∈ R 1 × h W^{[2]} \in \mathbb{R}^{1 \times h} W[2]∈R1×h, b [ 2 ] ∈ R 1 × m b^{[2]} \in \mathbb{R}^{1 \times m} b[2]∈R1×m.
拿出 Z [ 2 ] Z^{[2]} Z[2] 和 W [ 2 ] W^{[2]} W[2] 具体分析:
Z [ 2 ] = { Z [ 2 ] ( 1 ) , Z [ 2 ] ( 2 ) , Z [ 2 ] ( 3 ) , ⋯ , Z [ 2 ] ( m ) } 1 × m Z^{[2]} = \{Z^{[2](1)},Z^{[2](2)},Z^{[2](3)},\cdots,Z^{[2](m)}\}_{1\times m} Z[2]={Z[2](1),Z[2](2),Z[2](3),⋯,Z[2](m)}1×m
A [ 1 ] = [ ∣ ∣ ∣ ∣ a [ 1 ] ( 1 ) a [ 1 ] ( 2 ) ⋯ a [ 1 ] ( m ) ∣ ∣ ∣ ∣ ] h × m A^{[1]}=\left[ \begin{array}{cccc} \mid & \mid &\mid & \mid \\ a^{[1](1)} & a^{[1](2)} & \cdots & a^{[1](m)} \\ \mid & \mid & \mid & \mid \end{array}\right]_{h\times m} A[1]=⎣⎡∣a[1](1)∣∣a[1](2)∣∣⋯∣∣a[1](m)∣⎦⎤h×m
W [ 2 ] = { W 1 [ 2 ] , W 2 [ 2 ] , W 3 [ 2 ] , ⋯ , W h [ 2 ] } 1 × h W^{[2]} = \{ W_1^{[2]},W_2^{[2]},W_3^{[2]},\cdots,W_h^{[2]}\}_{1\times h} W[2]={W1[2],W2[2],W3[2],⋯,Wh[2]}1×h
则 Z [ 2 ] = { Z [ 2 ] ( 1 ) , Z [ 2 ] ( 2 ) , Z [ 2 ] ( 3 ) , ⋯ , Z [ 2 ] ( m ) } 1 × m = { W 1 [ 2 ] , W 2 [ 2 ] , W 3 [ 2 ] , ⋯ , W h [ 2 ] } × [ ∣ ∣ ∣ ∣ a [ 1 ] ( 1 ) a [ 1 ] ( 2 ) ⋯ a [ 1 ] ( m ) ∣ ∣ ∣ ∣ ] h × m \begin{aligned} Z^{[2]} &=\{Z^{[2](1)},Z^{[2](2)},Z^{[2](3)},\cdots,Z^{[2](m)}\}_{1\times m} \\ & = \{ W_1^{[2]},W_2^{[2]},W_3^{[2]},\cdots,W_h^{[2]}\}\times \left[ \begin{array}{cccc} \mid & \mid &\mid & \mid \\ a^{[1](1)} & a^{[1](2)} & \cdots & a^{[1](m)} \\ \mid & \mid & \mid & \mid \end{array}\right]_{h\times m} \end{aligned} Z[2]={Z[2](1),Z[2](2),Z[2](3),⋯,Z[2](m)}1×m={W1[2],W2[2],W3[2],⋯,Wh[2]}×⎣⎡∣a[1](1)∣∣a[1](2)∣∣⋯∣∣a[1](m)∣⎦⎤h×m
因为: d Z [ 2 ] d W [ 2 ] \frac{dZ^{[2]}}{d W^{[2]}} dW[2]dZ[2]则表示:
{ d Z [ 2 ] } m × 1 T = d Z [ 2 ] d W [ 2 ] { d W [ 2 ] } h × 1 T \{dZ^{[2]}\}^T_{m \times 1} = \frac{dZ^{[2]}}{d W^{[2]}} \{d W^{[2]}\}^T_{h \times 1} {dZ[2]}m×1T=dW[2]dZ[2]{dW[2]}h×1T
则 d Z [ 2 ] d W [ 2 ] \frac{dZ^{[2]}}{d W^{[2]}} dW[2]dZ[2] 维度为(m,h)
[ d Z [ 2 ] ( 1 ) d Z [ 2 ] ( 2 ) d Z [ 2 ] ( 3 ) ⋮ d Z [ 2 ] ( m ) ] = 1 m [ d Z [ 2 ] ( 1 ) d W 1 [ 2 ] d Z [ 2 ] ( 1 ) d W 2 [ 2 ] ⋯ d Z [ 2 ] ( 1 ) d W h [ 2 ] ⋮ ⋮ ⋮ ⋮ d Z [ 2 ] ( m ) d W 1 [ 2 ] d Z [ 2 ] ( m ) d W 2 [ 2 ] ⋯ d Z [ 2 ] ( m ) d W h [ 2 ] ] m × h × [ d W 1 [ 2 ] d W 2 [ 2 ] d W 3 [ 2 ] ⋮ d W h [ 2 ] ] = 1 m A [ 1 ] T × [ d W 1 [ 2 ] d W 2 [ 2 ] d W 3 [ 2 ] ⋮ d W h [ 2 ] ] \left[\begin{array}{c} dZ^{[2](1)} \\dZ^{[2](2)}\\dZ^{[2](3)} \\ \vdots \\ dZ^{[2](m)} \end{array}\right] = \frac{1}{m} \left[ \begin{array}{cccc} \frac{dZ^{[2](1)}}{d W_{1}^{[2]}} & \frac{dZ^{[2](1)}}{d W_{2}^{[2]}} & \cdots & \frac{dZ^{[2](1)}}{d W_{h}^{[2]}} \\ \vdots & \vdots &\vdots & \vdots \\ \frac{dZ^{[2](m)}}{d W_{1}^{[2]}} & \frac{dZ^{[2](m)}}{d W_{2}^{[2]}} & \cdots& \frac{dZ^{[2](m)}}{d W_{h}^{[2]}} \end{array} \right]_{m \times h} \times \left[\begin{array}{c} dW_1^{[2]} \\dW_2^{[2]} \\dW_3^{[2]} \\ \vdots \\ dW_h^{[2]} \end{array}\right] = \frac{1}{m} A^{[1]T} \times \left[\begin{array}{c} dW_1^{[2]} \\dW_2^{[2]} \\dW_3^{[2]} \\ \vdots \\ dW_h^{[2]} \end{array}\right] ⎣⎢⎢⎢⎢⎢⎡dZ[2](1)dZ[2](2)dZ[2](3)⋮dZ[2](m)⎦⎥⎥⎥⎥⎥⎤=m1⎣⎢⎢⎢⎡dW1[2]dZ[2](1)⋮dW1[2]dZ[2](m)dW2[2]dZ[2](1)⋮dW2[2]dZ[2](m)⋯⋮⋯dWh[2]dZ[2](1)⋮dWh[2]dZ[2](m)⎦⎥⎥⎥⎤m×h×⎣⎢⎢⎢⎢⎢⎢⎡dW1[2]dW2[2]dW3[2]⋮dWh[2]⎦⎥⎥⎥⎥⎥⎥⎤=m1A[1]T×⎣⎢⎢⎢⎢⎢⎢⎡dW1[2]dW2[2]dW3[2]⋮dWh[2]⎦⎥⎥⎥⎥⎥⎥⎤
因此,可以推导出 d Z [ 2 ] d W [ 2 ] = 1 m A [ 1 ] T \frac{dZ^{[2]}}{d W^{[2]}} = \frac{1}{m}A^{[1]T} dW[2]dZ[2]=m1A[1]T
∂ J ( W , b ) ∂ b [ 2 ] = d J d Z [ 2 ] d Z [ 2 ] d b [ 2 ] = ( A [ 2 ] − Y ) 1 × m × { 1 } m × 1 × 1 m \frac{\partial J(W,b)}{\partial b^{[2]}} = \frac{dJ}{dZ^{[2]}}\frac{dZ^{[2]}}{db^{[2]}} = (A^{[2]}-Y)_{1 \times m}\times\{1\}_{m \times 1 } \times \frac{1}{m} ∂b[2]∂J(W,b)=dZ[2]dJdb[2]dZ[2]=(A[2]−Y)1×m×{1}m×1×m1
这相当于是对 ( A [ 2 ] − Y ) 1 × m (A^{[2]}-Y)_{1 \times m} (A[2]−Y)1×m求平均值。
import numpy as np
dZ2 = A2 - Y
db2 = 1.0 / m * np.sum(dZ2, axis=1, keepdims=True)
其他梯度也可以通过类似的方式求解
∂ J ( W , b ) ∂ W [ 1 ] = d J d Z [ 1 ] X T ∂ J ( W , b ) ∂ b [ 1 ] = d J d Z [ 1 ] d J d Z [ 1 ] = W [ 2 ] d J d Z [ 2 ] ∗ σ [ 1 ] ′ ( Z [ 1 ] ) \frac{\partial J(W,b)}{\partial W^{[1]}} = \frac{dJ}{dZ^{[1]}}X^T \\ \frac{\partial J(W,b)}{\partial b^{[1]}} = \frac{dJ}{dZ^{[1]}} \\ \frac{dJ}{dZ^{[1]}} = W^{[2]} \frac{dJ}{dZ^{[2]}}*\sigma^{[1]'}(Z^{[1]}) ∂W[1]∂J(W,b)=dZ[1]dJXT∂b[1]∂J(W,b)=dZ[1]dJdZ[1]dJ=W[2]dZ[2]dJ∗σ[1]′(Z[1])
梯度下降的参数更新为:
W [ 1 ] ← W [ 1 ] − α ∂ J ( [ 1 ] , b [ 1 ] ) ∂ [ 1 ] , b [ 1 ] ← b [ 1 ] − α ∂ J ( W [ 1 ] , b [ 1 ] ) ∂ b [ 1 ] W [ 2 ] ← W [ 2 ] − α ∂ J ( [ 2 ] , b [ 2 ] ) ∂ [ 2 ] , b [ 2 ] ← b [ 2 ] − α ∂ J ( W [ 2 ] , b [ 2 ] ) ∂ b [ 2 ] W^{[1]} \leftarrow W^{[1]}-\alpha\frac{\partial J(^{[1]},b^{[1]})}{\partial ^{[1]}}, \ \ b^{[1]} \leftarrow b^{[1]}-\alpha\frac{\partial J(W^{[1]},b^{[1]})}{\partial b^{[1]}} \\ W^{[2]} \leftarrow W^{[2]}-\alpha\frac{\partial J(^{[2]},b^{[2]})}{\partial ^{[2]}}, \ \ b^{[2]} \leftarrow b^{[2]}-\alpha\frac{\partial J(W^{[2]},b^{[2]})}{\partial b^{[2]}} \\ W[1]←W[1]−α∂[1]∂J([1],b[1]), b[1]←b[1]−α∂b[1]∂J(W[1],b[1])W[2]←W[2]−α∂[2]∂J([2],b[2]), b[2]←b[2]−α∂b[2]∂J(W[2],b[2])
α : l e a r n i n g r a t e \alpha: learning \ rate α:learning rate 学习率小更新慢,反之则快。
详情可见 Coursera Deep Learning.
def forward_propagation(X, parameters):
"""
Argument:
X -- input data of size (n_x, m)
parameters -- python dictionary containing your parameters (output of initialization function)
Returns:
A2 -- The sigmoid output of the second activation
cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
"""
# Retrieve each parameter from the dictionary "parameters"
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
# Implement Forward Propagation to calculate A2 (probabilities)
Z1 = np.dot(W1, X) + b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2, A1) + b2
A2 = sigmoid(Z2)
assert (A2.shape == (1, X.shape[1]))
cache = {"Z1": Z1,
"A1": A1,
"Z2": Z2,
"A2": A2}
return A2, cache
def compute_cost(A2, Y):
"""
Computes the cross-entropy cost given in equation (13)
Arguments:
A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
Y -- "true" labels vector of shape (1, number of examples)
parameters -- python dictionary containing your parameters W1, b1, W2 and b2
Returns:
cost -- cross-entropy cost given equation (13)
"""
m = Y.shape[1] # number of example
# Compute the cross-entropy cost
logprobs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1 - A2), (1 - Y))
cost = -(1.0 / m) * np.sum(logprobs)
cost = np.squeeze(cost) # makes sure cost is the dimension we expect. # E.g., turns [[17]] into 17
assert (isinstance(cost, float))
return cost
def backward_propagation(parameters, cache, X, Y):
"""
Implement the backward propagation using the instructions above.
Arguments:
parameters -- python dictionary containing our parameters
cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
X -- input data of shape (2, number of examples)
Y -- "true" labels vector of shape (1, number of examples)
Returns:
grads -- python dictionary containing your gradients with respect to different parameters
"""
m = X.shape[1] # sample size
# First, retrieve W1 and W2 from the dictionary "parameters".
W1 = parameters["W1"]
W2 = parameters["W2"]
# Retrieve also A1 and A2 from dictionary "cache".
A1 = cache["A1"]
A2 = cache["A2"]
# Backward propagation: calculate dW1, db1, dW2, db2.
dZ2 = A2 - Y
dW2 = 1.0 / m * np.dot(dZ2, A1.T)
db2 = 1.0 / m * np.sum(dZ2, axis=1, keepdims=True)
dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2))
dW1 = 1.0 / m * np.dot(dZ1, X.T)
db1 = 1.0 / m * np.sum(dZ1, axis=1, keepdims=True)
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2}
return grads
def update_parameters(parameters, grads, learning_rate=1.2):
"""
Updates parameters using the gradient descent update rule given above
Arguments:
parameters -- python dictionary containing your parameters
grads -- python dictionary containing your gradients
Returns:
parameters -- python dictionary containing your updated parameters
"""
# Retrieve each parameter from the dictionary "parameters"
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
# Retrieve each gradient from the dictionary "grads"
dW1 = grads["dW1"]
db1 = grads["db1"]
dW2 = grads["dW2"]
db2 = grads["db2"]
# Update rule for each parameter
W1 = W1 - learning_rate * dW1
b1 = b1 - learning_rate * db1
W2 = W2 - learning_rate * dW2
b2 = b2 - learning_rate * db2
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
def nn_model(X, Y, n_h, num_iterations=10000, print_cost=False):
"""
Arguments:
X -- dataset of shape (2, number of examples)
Y -- labels of shape (1, number of examples)
n_h -- size of the hidden layer
num_iterations -- Number of iterations in gradient descent loop
print_cost -- if True, print the cost every 1000 iterations
Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
"""
np.random.seed(3)
n_x = layer_sizes(X, Y)[0]
n_y = layer_sizes(X, Y)[2]
# Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2,
# parameters".
parameters = initialize_parameters(n_x, n_h, n_y)
# W1 = parameters["W1"]
# b1 = parameters["b1"]
# W2 = parameters["W2"]
# b2 = parameters["b2"]
# Loop (gradient descent)
Cost_plot = []
for i in range(0, num_iterations):
# Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
A2, cache = forward_propagation(X, parameters)
# Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
cost = compute_cost(A2, Y)
# Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
grads = backward_propagation(parameters, cache, X, Y)
# Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
parameters = update_parameters(parameters, grads, learning_rate=1.2)
# Stack all the cost for plot
Cost_plot = np.append(Cost_plot, cost)
# Print the cost every 1000 iterations
if print_cost and i % 10 == 0:
print("Cost after iteration %i: %f" % (i, cost))
return parameters, Cost_plot
def predict(parameters, X):
"""
Using the learned parameters, predicts a class for each example in X
Arguments:
parameters -- python dictionary containing your parameters
X -- input data of size (n_x, m)
Returns
predictions -- vector of predictions of our model (red: 0 / blue: 1)
"""
# Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
A2, cache = forward_propagation(X, parameters)
predictions = (A2 > 0.5)
return predictions
# Package imports
import numpy as np
import matplotlib.pyplot as plt
import sklearn.linear_model
from NN_Compute_Function import nn_model, predict
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
np.random.seed(1) # set a seed so that the results are consistent
'''
Import the data from Datasets
'''
# Visualize the data:
X, Y = load_planar_dataset()
'''
Build a model with a n_h-dimensional hidden layer
'''
parameters, cost_for_plot = nn_model(X, Y, n_h=9, num_iterations=10000, print_cost=True)
plt.plot(cost_for_plot, label='Cost function')
plt.legend()
plt.show()
# Print accuracy of 2-Layers-NN
predictions = predict(parameters, X)
print('Accuracy of 2-Layers-NN: %d' % float(
(np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%'
+ " with hidden layer size of " + str(4))
if __name__ == "__main__":
print('=====[This is implementation of two layers neural network on classification]=====')