- ARIMA差分自回归移动平均模型--时间序列预测
别团等shy哥发育
数据挖掘与机器学习回归python数据挖掘时间序列分析机器学习
ARIMA差分自回归移动平均模型1、ARIMA模型理论基础2、ARIMA建模步骤3、ARIMA建模实战3.1导入模块3.2加载数据3.3平稳性检验3.4单位根检验3.4白噪声检验3.5模型定阶3.6参数估计3.7模型的显著性检验3.8模型预测3.8模型拟合效果展示参考文献论文:文章:1、ARIMA模型理论基础 ARIMA是差分自回归移动平均模型的引文缩写,其中AR表示的是自回归模型,MA表示的是
- 《深入浅出LLM基础篇》(三):大模型结构分类
GoAI
深入浅出LLM深入浅出AI自然语言处理NLP大模型LLM人工智能transformerchatgpt
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- <Attention Is All You Need>:全网首次提出Transformer模型论文中英文对照学习
kingking44
transformer学习人工智能
论文摘要英文Thedominantsequencetransductionmodelsarebasedoncomplexrecurrentorconvolutionalneuralnetworksthatincludeanencoderandadecoder.Thebestperformingmodelsalsoconnecttheencoderanddecoderthroughanattenti
- 【论文精读】MotionLM
EEPI
自动驾驶深度学习论文阅读
【论文精读】MotionLM1背景2存在的问题3具体方案轨迹转运动序列模型轨迹去重和聚类loss1背景团队:Waymo时间:2023.9代码:简介:采用自回归的方式做轨迹生成,能够更好地建模交互,且避免模态坍缩,在数据集达到了SOTA。2存在的问题轨迹回归方面:原本xy预测认为空间过大,有的xy很大(t大速度快的时候),有的xy很小(t小速度慢的时候)。3具体方案Encoder采用了之前的论文Wa
- 【论文精读】Sparse4D v2: Recurrent Temporal Fusion with Sparse Model
EEPI
自动驾驶人工智能论文阅读深度学习目标检测
1背景团队:地平线时间:代码:简介:这篇论文是Sparse4D的续作,区别主要在于特征时序融合上,新版提高了运算效率。后续端到端SparseDrive的基本框架与这篇基本类似。2存在的问题2.1其他稀疏3D检测的问题PETR是query-based方法,但是为了实现特征融合,进行了全局注意力机制,导致高计算量。2.2Sparse4Dv1的问题Sparse4Dv1的时序特征融合hierarchyfu
- 每周论文精读05-A2J:AnchortoJointRegressionNetwork for 3D ArticulatedPoseEstimation from a SingleDepthImage
Jason_____Wang
精读笔记python计算机视觉卷积手势识别深度学习
https://download.csdn.net/download/Jason_____Wang/16502249论文精读——A2J:Anchor-to-JointRegressionNetworkfor3DArticulatedPoseEstimationfromaSingleDepthImage标题比较长,已经打不完了。。所以题目格式有些变形,望谅解。上周尝试做了一下代码复现的方向,因为生活
- 基于ESP-NOW协议的温室通风监控系统
神一样的老师
物联网论文阅读分享物联网
论文标题中文标题:基于ESP-NOW协议的温室通风监控系统英文标题:SistemademonitoreodeventilacióneninvernaderoconprotocoloESP-NOW作者信息HéctorDeSosaa,*,GermánA.Xandera,LuisA.Urbania,AlejandroG.MaxitaaUniversidadNacionaldeMisiones,Facul
- MobileNetV4(2024 ECCV)
刘若里
论文阅读学习网络计算机视觉笔记
论文标题MobileNetV4:UniversalModelsfortheMobileEcosystem论文作者DanfengQin,ChasLeichner,ManolisDelakis,MarcoFornoni,ShixinLuo,FanYang,WeijunWang,ColbyBanbury,ChengxiYe,BerkinAkin,VaibhavAggarwal,TenghuiZhu,Da
- 【300套】基于Springboot+Vue的Java毕业设计项目(附源码+演示视频+LW)
程序猿老A(专注毕业设计)
基于Java的毕业设计javaspringboot课程设计
大家好!我是程序猿老A,感谢您阅读本文,欢迎一键三连哦。今天给大家分享300+的Java毕业设计,基于Springboot+vue框架,这些项目都经过精心挑选,涵盖了不同的实战主题和用例,可做毕业设计和课程设计参考。✍️除了源码,对于大部分项目实现的功能都有相应的介绍,并且配有演示视频,方便大家根据自己的需要择优下载学习。另外如有定制需求或者想要相对应的论文参考,文末可以十我VX联系。后续还会持续
- 活动集锦 | 英码科技积极参与行业盛会,AI赋能城市数字化转型
英码科技
人工智能科技大数据
在当今数字经济时代,城市全域数字化转型已经成为提升城市管理效能、优化资源配置、推动经济发展的重要手段。英码科技始终致力于为企业打造高效、低成本的行业应用方案,助力企业实现数字化转型。近日,英码科技受邀参加了多场行业展示活动,展示了其在数字化转型方面的成果和技术。▎2024新型智慧城市建设成果展览会6月5日至6月7日,以“数字经济赋能,洞见未来城市”为主题的2024新型智慧城市建设成果博览会在广州琶
- Mooncake:kimi后端推理服务的架构设计
风生水气
大模型应用技术栈大模型人工智能ai语言模型后端
前言本文依托论文《Mooncake:AKVCache-centricDisaggregatedArchitectureforLLMServing》来讲解kimi的后端服务架构Mooncake,并按照自己的思路来梳理论文中的一些关键信息。背景服务端面临的问题随着大模型技术越来越强,很多应用都是以Maas(ModelasaService)的方式对外提供服务,服务端的能力受模型的能力约束。对于C端应用来
- 《深入浅出多模态》 (五):多模态经典模型ALBEF
GoAI
深入浅出多模态多模态大模型LLM深度学习人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- TPAMI 2024 | SSR-2D: 从2D图像进行语义3D场景重建
小白学视觉
论文解读IEEETPAMI深度学习顶刊论文论文解读TPAMI
论文信息题目:SSR-2D:Semantic3DSceneReconstructionFrom2DImagesSSR-2D:从2D图像进行语义3D场景重建作者:JunwenHuang,AlexeyArtemov,YujinChen,ShuaifengZhi,KaiXu,andMatthiasNießner论文创新点首次提出了一种基于深度学习的方法,能够在不使用任何3D标注的情况下,从不完整的RGB
- 【AI论文】随机鹦鹉在大型语言模型(LLM)之肩:物理概念理解的总结性评估
东临碣石82
人工智能语言模型自然语言处理
摘要:我们以系统的方式探讨了一个被广泛提及的问题:大型语言模型(LLM)真的理解它们所说的话吗?这与人们更为熟悉的术语“随机鹦鹉”息息相关。为此,我们提出了一项总结性评估,针对一项精心设计的物理概念理解任务——PhysiCo。我们的任务通过使用网格格式的输入来抽象描述物理现象,从而缓解了记忆问题。这些网格代表了不同层次的理解,从核心现象、应用实例到网格世界中其他抽象模式的类比。对我们任务的全面研究
- 「重磅」Sci.Robot最新封面:由多种人体肌肉组织驱动的生物混合手,人机融合取得新突破
天机️灵韵
具身智能人工智能硬件设备机器人生物信息学具身智能人工智能
ScienceRobotics查看原文:https://www.science.org/doi/10.1126/scirobotics.adr5512论文解析:《Biohybridhandactuatedbymultiplehumanmuscletissues》研究背景与目标本研究提出了一种基于生物混合技术的机械手,通过集成多个人体骨骼肌组织(MuMuTA,Multi-MaterialMulti-
- 2025年美赛数学建模 ICM 问题 F: 网络安全强大吗?
深度学习&目标检测实战项目
2025年美赛MCM/ICM数学建模2025年数学建模美赛2025美赛F题网络安全强大吗思路代码F题
全部都是公开资料,不代写论文,请勿盲目订阅)2025年数学建模美赛期间,会发布思路和代码,赛前半价,赛前会发布往年美赛的经典案例,赛题会结合最新款的chatgpto1pro分析,会根据赛题难度,选择合适的题目着重分析,没有代写论文服务,只会发布思路和代码,因为赛制要求,不会回复私信。内容可能达不到大家预期,请不要盲目订阅。已开通200美元/月的chatgptpro会员,会充分利用chatgpto1
- Deepseek详细的自我介绍
welcome_123_
人工智能
###**DeepSeek:中国自研AGI大模型的深度解析**---####**1.技术背景与研发理念**DeepSeek由国内顶尖AI科学家团队领衔,核心技术成员来自清华大学、北京大学及国际顶级AI实验室,团队在NLP、分布式训练、模型压缩等领域发表顶会论文超200篇。研发理念聚焦三个核心:-**高效性**:通过模型架构创新(如MoE)实现“小参数量,大性能”。-**可控性**:内置可解释性模块
- python flask django在线投票系统 md14i
专注分享bishe530
pythonflaskdjango
文章目录具体实现截图项目技术介绍论文写作思路核心代码部分展示可定制开发功能创新亮点django项目示例源码/演示视频获取方式具体实现截图项目技术介绍Python版本:python3.7以上框架支持:flask/django开发软件:PyCharm数据库:mysql数据库工具:Navicat浏览器:谷歌浏览器(PycharmFlaskDjangoVuemysql)论文写作思路第一部分绪论,主要介绍所
- 人工智能推理模型(S1-32B)超越DeepSeek?
deepdata_cn
垂域模型人工智能人工智能大语言模型
S1模型是由斯坦福大学和华盛顿大学的研究团队在李飞飞教授的领衔下开发的人工智能推理模型。从2000年李飞飞进入加州理工学院攻读研究生起,就一直从事人工智能研究,在计算机视觉领域创立了拥有1500万张图片的ImageNet数据库,为人工智能计算机视觉研究奠定了基础,也积累了深厚的人工智能技术理论和实践经验。论文地址:https://arxiv.org/pdf/2501.19393一、发展过程模型采用
- YOLOv1 损失函数
余将董道而不豫兮
YOLO神经网络python深度学习人工智能机器学习计算机视觉
相关文章YOLOv1论文简要YOLOv1数据集加载YOLOv1损失函数YOLOv1模型构建与训练YOLOv1目标检测项目地址:YOLOv1VOC2007笔者训练的权重地址:阿里云盘分享10秒文章速览对于YOLOv1的损失函数,使用Python程序实现损失函数的计算关于损失函数的计算,在《YOLOv1论文简要》一文中已经进行了较详细的解释。只不过,在本文中,需要以代码的形式表达出来平方和误差在YOL
- 字节跳动实习生和校招生内推
飞300
pythonjavascriptphp业界资讯算法
机器学习算法实习生-平台治理1、2026届硕士及以上学位在读,计算机等相关专业优先;2、有扎实的代码能力,熟悉深度学习/图神经网络/机器学习框架,如Pytorch、Tensorflow、DGL、Pyg、Sklearn等;3、熟悉机器学习/图学习/序列学习算法中的一项或者多项,如图建模、时序信号建模、节点/子图分类、社区挖掘、表征学习、自监督/半监督学习等,有一定深度和广度;4、熟悉相关算法在数据挖
- 构建知识图谱之二(知识图谱构建技术)
tomlone
知识谱图知识图谱人工智能
ArchitectureofKnowledgeGraphConstructionTechniques知识图谱构建技术论文链接:https://acadpubl.eu/jsi/2018-118-19/articles/19b/24.pdf1.为什么我们需要构建知识图谱?构建知识图谱对于保险行业的意义在于它能够将分散的、复杂的行业数据连接起来,促进智能化决策、增强风险控制能力、提高效率并优化客户体验。
- 文献管理详解-ChatGPT4o作答
部分分式
笔记
文献管理详解文献管理是学术研究中的重要环节,尤其是在撰写论文、报告或项目时,研究者往往需要处理大量的参考文献。一个科学高效的文献管理流程,能够显著提升研究工作的效率和质量。以下从文献管理的意义、基本流程、常用工具、技巧与策略以及常见问题等方面详细讲解文献管理。1.文献管理的意义1.1提高效率避免重复查找文献,节约时间。快速检索需要的文献和数据,尤其是在文献量较大的情况下。1.2提升写作质量在论文写
- C++循环结构:原理剖析与工程实践优化策略
溟海.
c++开发语言
以下是一篇关于C++循环结构的原创技术论文框架及内容示例,包含理论解析与工程实践结合的分析C++循环结构:原理剖析与工程实践优化策略**摘要**本文系统探讨C++语言中循环结构的实现机制、应用场景及优化方法。通过分析for、while、do-while三种基本循环结构在编译器层面的实现差异,结合现代C++11/17标准新增特性,提出面向性能优化和代码可维护性的工程实践方案。实验表明,合理选择循环结
- SoftEther 内网穿透配置及使用*
十八点四零
运维阿里云网络
一、程序简介SoftEtherV*N是个由筑波大学DaiyuuNobori研究生因硕士论文开发的开源、跨平台、多重协议的虚拟专用网方案。他让一些虚拟专用网协议像是SSLV*N、L2TP、IPsec、OpenV*N以及微软SSTP都由同一个单一V*N服务器提供。在2014年一月四日以GNU通用公共授权条款方式发布。SothEtherV*N是专门被设计为穿过防火墙的。它支持NAT穿透,使他能越过政府或
- C++栈内存管理:从原理到高性能编程实践
溟海.
c++c++开发语言
以下是一篇关于C++栈机制的原创技术论文框架及内容,结合语言规范、编译器实现与工程实践,包含创新性分析和实验验证:---**C++栈内存管理:从原理到高性能编程实践****摘要**本文深入剖析C++栈内存的分配机制、生命周期管理及优化策略。通过反汇编分析GCC/Clang编译器实现,验证栈帧结构与函数调用约定,提出基于现代C++特性的栈使用优化方案。实验证明,合理控制栈空间可降低30%内存访问延迟
- 计算机毕业设计——Springboot点餐平台网站
程序媛9688
课程设计springboot后端
作者:程序媛9688开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等。文末获取源码+数据库感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人计算机毕业设计——jspssm523Springboot点餐平台网站SpringBoot点餐平台网站功能说明在当今数字化时
- 基于JavaSpringmvc+myabtis+html的鲜花商城系统设计和实现
网顺技术团队
成品程序项目html前端课程设计java开发语言mybatis
基于JavaSpringmvc+myabtis+html的鲜花商城系统设计和实现作者主页网顺技术团队欢迎点赞收藏⭐留言文末获取源码联系方式查看下方微信号获取联系方式承接各种定制系统精彩系列推荐精彩专栏推荐订阅不然下次找不到哟Java毕设项目精品实战案例《1000套》感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人文章目录基于JavaSpri
- 紫光展锐面试——软件岗
fpga和matlab
★求职2:大厂笔试面试总结面试java职场和发展紫光展锐面试紫光展锐笔试
目录面试案例1面试案例2笔试一面二面三面四面面试案例3三面面试案例11、自我介绍2、问项目、方向3、static关键字4、volatile关键字5、final关键字6、synchronized关键字7、进程和线程的区别8、进程通信方式的区别(共享内存、消息队列优缺点)9、线程通信方式10、接口和抽象类的区别11、设计模式熟悉吗?说完之后讲下单例模式?12、拿过什么奖吗13、发过论文和专利吗14、能
- Transformer
AI专题精讲
深度学习transformer深度学习自然语言处理
1.TransformerTransformer是一种新的、基于attention机制来实现的特征提取器,可用于代替CNN和RNN来提取序列的特征。Transformer首次由论文《AttentionIsAllYouNeed》提出,在该论文中Transformer用于encoder-decoder架构。事实上Transformer可以单独应用于encoder或者单独应用于decoder。Trans
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag