其实神经网络的准确率的标准是自己定义的。
我把你的例子赋予某种意义讲解:
1,期望输出[1 0 0 1],每个元素代表一个属性是否存在。像着4个元素分别表示:是否肺炎,是否肝炎,是否肾炎,是否胆炎,1表示是,0表示不是。
2,你的神经网络输出必定不可能全部都是输出只有0,1的输出。绝大部分是像[ 0.9968 0.0000 0.0001 0.9970]这样的输出,所以只要输出中的某个元素大于一定的值,例如0.7,我们就认为这个元素是1,即是有某种炎。否则为0,所以你的[ 0.9968 0.0000 0.0001 0.9970]可以看成是[1,0,0,1],。
3,所以一般神经网络的输出要按一定的标准定义成另一种输出(像上面说的),看调整后的输出和期望输出是否一致,一致的话算正确,不一致算错误。
4,用总量为n的检验样本对网络进行评价,输出调整后的输出,统计错误的个数,记为m。
所以检验正确率可以定义为n/m。
正常 模型的准确度取决于你的样本质量和数量 样本最好能涵盖所有因子的取值范围,比如说样本中因子A取值在0-100之间,如果测试数据因子A取值为200,就可能造成模型预测偏差太大matlab神经网络准确率。
首先是我不知道你用的matlab是什么版本。
如果用的2010以后的版本,那么你这样初始化神经网络一定会报警告。
2010版以后初始化神经网络的语句是这样的
net = newff(p, t, 7);
输出层不需要自己去告诉系统。
我想知道的第二个问题,是你的输出层函数是否需要使用logsig。如果使用purelin,那么你大可不必去归一化。后面我会告诉你原因。
你手动指定了训练次数,但是学习率0.01这个数值不知道你从哪里找到的。我可能会选择高一点的学习率,最高我用过0.25.
训练函数你也是手动指定的,这个是需要的么?如果不需要,对于7个神经节点,完全可以使用trainlm,这样你也不需要这么多的训练次数。
下面说一下2010以后的matlab中,神经网络训练增加的一个功能。在初始化神经网络以后,有一个默认的dividing function,将训练样本中的一部分用来校验神经网络性能,以防止过度训练。那么这个参数可能会导致训练不充分。在初始化神经网络以后,需要做的工作是设定net.divideFcn = '';用来去掉这个分配函数。
如果你需要更改你的transfer function,那么可以在net.layers{2}.transferFcn = 'logsig'将输出层传输函数手动修改。
那么,我使用全默认设置,没有进行归一化处理,获得的结果是这样的。
这个就是把你的t和训练后的神经网络计算的结果放在一起。结果已经很不错了。
如过我去掉了分配函数,那么神经网络就会一直训练到训练次数上限或者达到目标值。165次训练后,误差值是1.77e-19(误差使用mean squared error计算),结果在这里贴出来已经没意义了,因为几乎没有误差。
如果你还有问题,那么跟我细聊一下。
1、你可以尝试运行多次后比较其结果,最好重启matlab,再运行你的神经网络程序。
2、确认一下你的bp神经网络参数设置是否合理。
3、也有可能的数据不适合用bp神经网络训练,可以考虑其他方法。
应该是点performance那个按钮,显示一个误差下降曲线图。
事实上,不需过分关注这条曲线,除非是研究改进算法提高收敛速度的。一般关注网络的实际训练效果,以及实际应用能力,如预测能力等。
BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。
除了楼上的方法,还可以修改下神经网络的初始权值,这方面的方法很多,可以改变下初始参数的取值范围,或者用遗传算法搜索下。另外,改变神经网络的训练函数是十分有效的,比如trainscg什么的,还有好几个记不得了,自己找找看!
如何看MATLAB运行神经网络的结果
从图中Neural Network可以看出,你的网络结构是两个隐含层,2-3-1-1结构的网络,算法是traindm,显示出来的误差变化为均方误差值mse。经过482次迭代循环完成训练,耗时5秒。相同计算精度的话,训练次数越少,耗时越短,网络结构越优秀。达到设定的网络精度0.001的时候,误差下降梯度为0.0046,远大于默认的1e-5,说明此时的网络误差仍在快速下降,所以可以把训练精度目标再提高一些,比如设为0.0001或者1e-5。
这是神经网络特性导致的,与matlab没关系。
一方面,如果你的网络层选的神经元的个数和层数不合适,就会导致这种结果;
另一方面,如果你的训练样本选择的不合适,或者数据表达的太快,也会导致这种问题。
前一个方面根据经验,后一个可以做成神经元的参数可调的。
这就是用的grid search的原理啊,
定义好c g搜索的网格,然后一个个的试,取交叉验证精度最高的g c值作为寻优的参数结果
看数字图片而定。如果图片较小并且质量还不错,那么通过2层的神经网络就能胜任。
对于MNIst数据集(28*28的手写数字),2层神经网络准确率可达99%,svm也有98%以上。
以上实现非常简单,matlab已经有现成工具箱。
卷积神经网络通常用于更加复杂的场合,闭合是被图像内容等。在MNIST数据集上cnn可达99.7%准确率,但是实现起来较为复杂,需要通过开源框架caffe,keras等进行编程。
如果对准确率要求没有达到小数点后两位的程度,用简单的svm,神经网络,softmax等调调参数就行了。