ubuntu20.0.4安装opencv4.2.0和opencv_contrib-4.2.0并支持CUDA,Geforce RTX 3060显卡,算力8.6

参考:Ubuntu系统---配置OpenCV 

一、下载和安装依赖包

1、首先更新 apt-get,在安装前最好先更新一下系统,不然有可能会安装失败。在终端输入:

sudo apt-get update
sudo apt-get upgrade

2、接着安装官方给的opencv依赖包,在终端输入:

sudo apt-get install build-essential
sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
sudo apt-get -y install libgstreamer-plugins-base1.0-dev
sudo apt-get -y install libgstreamer1.0-dev
sudo apt-get install libvtk6-dev

OpenCV3.4.x版本+Opencv_contrib+Ubuntu16.04安装记录_YuYunTan的博客-CSDN博客

安装前的必备包

  这些安装不算十分完全,我只安装自己够用就成的某些包。
  安装一些必要的库,还有cmake,git,g++。

sudo apt-get install build-essential 
sudo apt-get install cmake git g++

安装依赖包

  安装一些依赖包。

sudo apt-get install libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev libv4l-dev liblapacke-dev
sudo apt-get install checkinstall yasm libxine2-dev libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev libfaac-dev libmp3lame-dev libtheora-dev
sudo apt-get install libopencore-amrnb-dev libopencore-amrwb-dev libavresample-dev x264 v4l-utils

处理图像所需的包

sudo apt-get install libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev 

处理视频所需包

sudo apt-get install libxvidcore-dev libx264-dev ffmpeg

opencv功能优化

sudo apt-get install libatlas-base-dev gfortran 

部分依赖包

sudo apt-get install libopencv-dev  libqt4-dev qt4-qmake libqglviewer-dev libsuitesparse-dev libcxsparse3.1.4 libcholmod3.0.6 
sudo apt-get install python-dev python-numpy

可选依赖

sudo apt-get install libprotobuf-dev protobuf-compiler
sudo apt-get install libgoogle-glog-dev libgflags-dev
sudo apt-get install libgphoto2-dev libeigen3-dev libhdf5-dev doxygen

3.下载cmake-gui工具和mingw-w64

sudo apt install cmake-qt-gui
sudo apt install mingw-w64

 

二、下载opencv4.2.0和opencv_contrib-4.2.0源码压缩包 

opencv4.2.0 地址https://github.com/opencv/opencv/tree/4.2.0

opencv_contrib-4.2.0地址https://github.com/opencv/opencv_contrib

首先在终端中输入如下命令来安装依赖包:

sudo apt  install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev  
sudo apt install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libdc1394-22-dev  
sudo apt  install build-essential qt5-default ccache libv4l-dev libavresample-dev  libgphoto2-dev libopenblas-base libopenblas-dev doxygen  openjdk-8-jdk pylint libvtk6-dev

三、配置opencv

1、将opencv4.2.0和opencv_contrib-4.2.0解压(提取),放在一个文件夹opencv-4.2.0下,如下图所示:

ubuntu20.0.4安装opencv4.2.0和opencv_contrib-4.2.0并支持CUDA,Geforce RTX 3060显卡,算力8.6_第1张图片

 2、双击进入解压出来的opencv-4.2.0文件夹,右键打开终端(或者在别处打开终端,通过输入cd opencv-4.2.0进入当前目录下),然后依次输入(不要忘了第三行的最后的空格和两个点):

mkdir build
cd build 

ubuntu20.0.4安装opencv4.2.0和opencv_contrib-4.2.0并支持CUDA,Geforce RTX 3060显卡,算力8.6_第2张图片​ 

3.然后进行cmake编译,参数可自行调整:

build目录内执行以下命令(注意contrib路径换成自己的):
下面的参数是带cuda和contrib扩展包的:

cmake -D CMAKE_BUILD_TYPE=RELEASE \
 -D CMAKE_INSTALL_PREFIX=/usr/local \
 -D INSTALL_PYTHON_EXAMPLES=ON \
 -D INSTALL_C_EXAMPLES=ON \
 -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.2.0/modules \
 -D PYTHON3_EXECUTABLE=/usr/bin/python3 \
 -D PYTHON_EXECUTABLE=/usr/bin/python \
 -D WITH_TBB=ON \
 -D WITH_V4L=ON \
 -D WITH_QT=ON \
 -D WITH_GTK=ON \
 -D WITH_VTK=ON \
 -D WITH_OPENGL=ON \
 -D WITH_OPENMP=ON\
 -D BUILD_EXAMPLES=ON \
 -D WITH_CUDA=ON \
 -D BUILD_TIFF=ON \
 -D ENABLE_PRECOMPILED_HEADERS=OFF\
 -D INSTALL_PYTHON_EXAMPLES=ON \
 -D OPENCV_GENERATE_PKGCONFIG=ON \
 -DOPENCV_ENABLE_NONFREE=ON \
 -D CUDA_nppicom_LIBRARY=stdc++ \
 -D CUDA_ARCH_BIN="8.6" ..
  • CUDA_ARCH_BIN一般需要指定,且最好不要把所有版本都编译,如CUDA_ARCH_BIN="3.0 3.5 3.7 5.0 5.2 6.0 6.1 7.0 7.5 8.6"
    最好根据上面的说明,查一下当前显卡的型号,以及对应的显卡算力,然后在这里指定一个即可,如3060显卡可以保持 CUDA_ARCH_BIN="8.6"。否则全部编译一遍速度会很慢。

     3060显卡不加这条命令: -D CUDA_ARCH_BIN="8.6" ,会报错如下:

    nvcc fatal   : Unsupported gpu architecture 'compute_30'
    CMake Error at cuda_compile_1_generated_gpu_mat.cu.o.RELEASE.cmake:222 (message):
      Error generating
      /home/cgm/opencv-4.2.0/opencv-4.2.0/build/modules/core/CMakeFiles/cuda_compile_1.dir/src/cuda/./cuda_compile_1_generated_gpu_mat.cu.o
    

    原因: 我的3060显卡不支持compute_30的GPU构架

    GPU Compute Capability
    Geforce RTX 3060 8.6

    算力 CUDA GPUs - Compute Capability | NVIDIA Developer

     nvcc warning : The 'compute_35', 'compute_37', 'compute_50', 'sm_35', 'sm_37' and 'sm_50' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning).

     

    nvcc警告:“compute_35”、“compute_3 7”、“compute_50”、“sm_35”,“sm_37”和“sm_50”体系结构已弃用,可能会在将来的版本中删除(使用-Wno弃用的gpu目标来抑制警告)。

cuda 11已经废弃 compute_30了,所以需要把compute_30给去掉

 ​ubuntu20.0.4安装opencv4.2.0和opencv_contrib-4.2.0并支持CUDA,Geforce RTX 3060显卡,算力8.6_第3张图片

  •  CMAKE_INSTALL_PREFIX指定了编译好的库的目录,也就是说编译完成的OpenCV库文件会在该目录下
  • OPENCV_GENERATE_PKGCONFIG指定了生成pkgconfig配置文件,这个文件在后续创建OpenCV工程的时会很有用。
  • 如果没有  -D OPENCV_GENERATE_PKGCONFIG=ON ,后面查看配置时会找不到:
$ pkg-config --cflags --libs opencv4

Package opencv4 was not found in the pkg-config search path.

Perhaps you should add the directory containing `opencv4.pc'

to the PKG_CONFIG_PATH environment variable

No package 'opencv4' found
  •   增加 这个命令  -DOPENCV_ENABLE_NONFREE=ON \  是为了不出现下面那这样的结果
terminate called after throwing an instance of 'cv::Exception'
  what():  OpenCV(4.2.0) /home/cgm/opencv-4.2.0/opencv_contrib-4.2.0/modules/xfeatures2d/src/surf.cpp:1027: error: (-213:The function/feature is not implemented) This algorithm is patented and is excluded in this configuration; Set OPENCV_ENABLE_NONFREE CMake option and rebuild the library in function 'create'

“此算法已获得专利,在此配置中被排除在外;”

“设置OPENCV_ENABLE_NONFREE CMake选项并重建库”);

ubuntu20.0.4安装opencv4.2.0和opencv_contrib-4.2.0并支持CUDA,Geforce RTX 3060显卡,算力8.6_第4张图片

 

3.编译成功

最后会列出其编译后的模块列表。

--   OpenCV modules:
--     To be built:                 aruco bgsegm bioinspired calib3d ccalib core cudaarithm cudabgsegm cudacodec cudafeatures2d cudafilters cudaimgproc cudalegacy cudaobjdetect cudaoptflow cudastereo cudawarping cudev cvv datasets dnn dnn_objdetect dnn_superres dpm face features2d flann freetype fuzzy gapi hdf hfs highgui img_hash imgcodecs imgproc line_descriptor ml objdetect optflow phase_unwrapping photo plot python2 python3 quality reg rgbd saliency sfm shape stereo stitching structured_light superres surface_matching text tracking ts video videoio videostab viz xfeatures2d ximgproc xobjdetect xphoto
--     Disabled:                    world
--     Disabled by dependency:      -
--     Unavailable:                 cnn_3dobj java js matlab ovis
--     Applications:                tests perf_tests examples apps
--     Documentation:               NO
--     Non-free algorithms:         NO
-- 
--   GUI: 
--     QT:                          YES (ver 5.12.8)
--       QT OpenGL support:         YES (Qt5::OpenGL 5.12.8)
--     GTK+:                        NO
--     OpenGL support:              YES (/usr/lib/x86_64-linux-gnu/libGL.so /usr/lib/x86_64-linux-gnu/libGLU.so)
--     VTK support:                 YES (ver 7.1.1)
-- 
--   Media I/O: 
--     ZLib:                        /usr/lib/x86_64-linux-gnu/libz.so (ver 1.2.11)
--     JPEG:                        /usr/lib/x86_64-linux-gnu/libjpeg.so (ver 80)
--     WEBP:                        /usr/lib/x86_64-linux-gnu/libwebp.so (ver encoder: 0x020e)
--     PNG:                         /usr/lib/x86_64-linux-gnu/libpng.so (ver 1.6.37)
--     TIFF:                        build (ver 42 - 4.0.10)
--     JPEG 2000:                   build (ver 1.900.1)
--     OpenEXR:                     build (ver 2.3.0)
--     HDR:                         YES
--     SUNRASTER:                   YES
--     PXM:                         YES
--     PFM:                         YES
-- 
--   Video I/O:
--     DC1394:                      YES (2.2.5)
--     FFMPEG:                      YES
--       avcodec:                   YES (58.54.100)
--       avformat:                  YES (58.29.100)
--       avutil:                    YES (56.31.100)
--       swscale:                   YES (5.5.100)
--       avresample:                YES (4.0.0)
--     GStreamer:                   YES (1.16.3)
--     v4l/v4l2:                    YES (linux/videodev2.h)
-- 
--   Parallel framework:            TBB (ver 2020.1 interface 11101)
-- 
--   Trace:                         YES (with Intel ITT)
-- 
--   Other third-party libraries:
--     Intel IPP:                   2019.0.0 Gold [2019.0.0]
--            at:                   /home/cgm/opencv-4.2.0/opencv-4.2.0/build/3rdparty/ippicv/ippicv_lnx/icv
--     Intel IPP IW:                sources (2019.0.0)
--               at:                /home/cgm/opencv-4.2.0/opencv-4.2.0/build/3rdparty/ippicv/ippicv_lnx/iw
--     Lapack:                      NO
--     Eigen:                       YES (ver 3.3.7)
--     Custom HAL:                  NO
--     Protobuf:                    build (3.5.1)
-- 
--   NVIDIA CUDA:                   YES (ver 11.4, CUFFT CUBLAS)
--     NVIDIA GPU arch:             30 35 37 50 52 60 61 70 75
--     NVIDIA PTX archs:
-- 
--   cuDNN:                         NO
-- 
--   OpenCL:                        YES (no extra features)
--     Include path:                /home/cgm/opencv-4.2.0/opencv-4.2.0/3rdparty/include/opencl/1.2
--     Link libraries:              Dynamic load
-- 
--   Python 2:
--     Interpreter:                 /usr/bin/python (ver 2.7.18)
--     Libraries:                   /usr/lib/x86_64-linux-gnu/libpython2.7.so (ver 2.7.18)
--     numpy:                       /usr/lib/python2.7/dist-packages/numpy/core/include (ver 1.16.5)
--     install path:                lib/python2.7/dist-packages/cv2/python-2.7
-- 
--   Python 3:
--     Interpreter:                 /usr/bin/python3 (ver 3.8.10)
--     Libraries:                   /usr/lib/x86_64-linux-gnu/libpython3.8.so (ver 3.8.10)
--     numpy:                       /home/cgm/.local/lib/python3.8/site-packages/numpy/core/include (ver 1.23.3)
--     install path:                lib/python3.8/dist-packages/cv2/python-3.8
-- 
--   Python (for build):            /usr/bin/python
--     Pylint:                      /usr/bin/pylint (ver: 3.8.10, checks: 163)
-- 
--   Java:                          
--     ant:                         NO
--     JNI:                         /usr/lib/jvm/java-8-openjdk-amd64/include /usr/lib/jvm/java-8-openjdk-amd64/include/linux /usr/lib/jvm/java-8-openjdk-amd64/include
--     Java wrappers:               NO
--     Java tests:                  NO
-- 
--   Install to:                    /usr/local
-- -----------------------------------------------------------------
-- 
-- Configuring done
-- Generating done
-- Build files have been written to: /home/cgm/opencv-4.2.0/opencv-4.2.0/build

 我们可以发现,我们编译已经成功,可以进行下一步,即make,但是值得注意的是,如果用多核make可能会报错

sudo make -j6

j6表示6核运行,查看自己 CPU 的核数:

# uniq 可以去重连续出现的相同记录
cat /proc/cpuinfo | grep "cpu cores" | uniq

报错:

ubuntu20.0.4安装opencv4.2.0和opencv_contrib-4.2.0并支持CUDA,Geforce RTX 3060显卡,算力8.6_第5张图片

 In file included from /home/cgm/opencv-4.2.0/opencv-4.2.0/modules/python/src2/cv2.cpp:35:
/home/cgm/opencv-4.2.0/opencv-4.2.0/build/modules/python_bindings_generator/pyopencv_generated_include.h:44:10: fatal error: opencv2/viz/types.hpp: 没有那个文件或目录
   44 | #include "opencv2/viz/types.hpp"

原因:仔细分析发现这个文件是 /home/cgm/opencv-4.2.0/opencv-4.2.0/modules/python/src2/cv2.cpp第35行包含了一个头文件 #include "pyopencv_generated_include.h"

然后搜索打开这个头文件 pyopencv_generated_include.h发现第44行就是出错没有找到的那个头文件#include "opencv2/viz/types.hpp"

然后make时在 opencv-4.2.0 里没有找到这个头文件,确实也没有,我搜索后发现这个文件在opencv_contrib-4.2.0里面.

/home/cgm/opencv-4.2.0/opencv_contrib-4.2.0/modules/viz/src
 ubuntu20.0.4安装opencv4.2.0和opencv_contrib-4.2.0并支持CUDA,Geforce RTX 3060显卡,算力8.6_第6张图片

解决办法: 将/home/cgm/opencv-4.2.0/opencv_contrib-4.2.0/modules/viz/include/opencv2/viz 添加进 /home/cgm/opencv-4.2.0/opencv-4.2.0/modules/python 的 CMakeLists.txt 里面.

include_directories("/home/cgm/opencv-4.2.0/opencv_contrib-4.2.0/modules/viz/include/opencv2/viz")

ubuntu20.0.4安装opencv4.2.0和opencv_contrib-4.2.0并支持CUDA,Geforce RTX 3060显卡,算力8.6_第7张图片

再重新cmake和make..........

ubuntu20.0.4安装opencv4.2.0和opencv_contrib-4.2.0并支持CUDA,Geforce RTX 3060显卡,算力8.6_第8张图片

 

4.安装

sudo make install

5.安装完成后还要配置环境变量

终端输入或用gedit(替换vim)打开:

sudo gedit /etc/ld.so.conf.d/opencv.conf

在里面添加:

/usr/local/lib

ubuntu20.0.4安装opencv4.2.0和opencv_contrib-4.2.0并支持CUDA,Geforce RTX 3060显卡,算力8.6_第9张图片保存退出,配置库:这里报错参考 sudo ldconfig报错

 

sudo ldconfig

ubuntu20.0.4安装opencv4.2.0和opencv_contrib-4.2.0并支持CUDA,Geforce RTX 3060显卡,算力8.6_第10张图片

 

添加修改环境变量

sudo gedit /etc/bash.bashrc

在末尾添加如下内容

PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig 
export PKG_CONFIG_PATH

ubuntu20.0.4安装opencv4.2.0和opencv_contrib-4.2.0并支持CUDA,Geforce RTX 3060显卡,算力8.6_第11张图片

保存退出,最后source一下,让更改立即生效:

source ~/.bashrc

这时候测试一下,输入:

pkg-config --cflags --libs opencv4

注意:opencv4以上才是pkg-config --cflags --libs opencv4,之前版本是pkg-config --cflags --libs opencv。

查看结果:

cgm@cgm:~/opencv-4.2.0/opencv-4.2.0/build$ pkg-config --cflags --libs opencv4
-I/usr/local/include/opencv4/opencv -I/usr/local/include/opencv4 -L/usr/local/lib -lopencv_gapi -lopencv_stitching -lopencv_aruco -lopencv_bgsegm -lopencv_bioinspired -lopencv_ccalib -lopencv_cudabgsegm -lopencv_cudafeatures2d -lopencv_cudaobjdetect -lopencv_cudastereo -lopencv_cvv -lopencv_dnn_objdetect -lopencv_dnn_superres -lopencv_dpm -lopencv_highgui -lopencv_face -lopencv_freetype -lopencv_fuzzy -lopencv_hdf -lopencv_hfs -lopencv_img_hash -lopencv_line_descriptor -lopencv_quality -lopencv_reg -lopencv_rgbd -lopencv_saliency -lopencv_sfm -lopencv_stereo -lopencv_structured_light -lopencv_phase_unwrapping -lopencv_superres -lopencv_cudacodec -lopencv_surface_matching -lopencv_tracking -lopencv_datasets -lopencv_text -lopencv_dnn -lopencv_plot -lopencv_videostab -lopencv_cudaoptflow -lopencv_optflow -lopencv_cudalegacy -lopencv_videoio -lopencv_cudawarping -lopencv_viz -lopencv_xfeatures2d -lopencv_shape -lopencv_ml -lopencv_ximgproc -lopencv_video -lopencv_xobjdetect -lopencv_objdetect -lopencv_calib3d -lopencv_imgcodecs -lopencv_features2d -lopencv_flann -lopencv_xphoto -lopencv_photo -lopencv_cudaimgproc -lopencv_cudafilters -lopencv_imgproc -lopencv_cudaarithm -lopencv_core -lopencv_cudev

四.运行测试

我安装这个的目的暂时是为了运行 SIFT,SURE,FREAK特征提取算法.

你们可以去测试自己的.

 

TO BE CONTINUED...

 

你可能感兴趣的:(ubuntu,opencv,计算机视觉,人工智能,ubuntu)