参考:Ubuntu系统---配置OpenCV
1、首先更新 apt-get,在安装前最好先更新一下系统,不然有可能会安装失败。在终端输入:
sudo apt-get update
sudo apt-get upgrade
2、接着安装官方给的opencv依赖包,在终端输入:
sudo apt-get install build-essential
sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
sudo apt-get -y install libgstreamer-plugins-base1.0-dev
sudo apt-get -y install libgstreamer1.0-dev
sudo apt-get install libvtk6-dev
OpenCV3.4.x版本+Opencv_contrib+Ubuntu16.04安装记录_YuYunTan的博客-CSDN博客
安装前的必备包
这些安装不算十分完全,我只安装自己够用就成的某些包。
安装一些必要的库,还有cmake,git,g++。
sudo apt-get install build-essential
sudo apt-get install cmake git g++
安装依赖包
安装一些依赖包。
sudo apt-get install libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev libv4l-dev liblapacke-dev
sudo apt-get install checkinstall yasm libxine2-dev libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev libfaac-dev libmp3lame-dev libtheora-dev
sudo apt-get install libopencore-amrnb-dev libopencore-amrwb-dev libavresample-dev x264 v4l-utils
处理图像所需的包
sudo apt-get install libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
处理视频所需包
sudo apt-get install libxvidcore-dev libx264-dev ffmpeg
opencv功能优化
sudo apt-get install libatlas-base-dev gfortran
部分依赖包
sudo apt-get install libopencv-dev libqt4-dev qt4-qmake libqglviewer-dev libsuitesparse-dev libcxsparse3.1.4 libcholmod3.0.6
sudo apt-get install python-dev python-numpy
可选依赖
sudo apt-get install libprotobuf-dev protobuf-compiler
sudo apt-get install libgoogle-glog-dev libgflags-dev
sudo apt-get install libgphoto2-dev libeigen3-dev libhdf5-dev doxygen
3.下载cmake-gui工具和mingw-w64
sudo apt install cmake-qt-gui
sudo apt install mingw-w64
opencv4.2.0 地址https://github.com/opencv/opencv/tree/4.2.0
opencv_contrib-4.2.0地址https://github.com/opencv/opencv_contrib
首先在终端中输入如下命令来安装依赖包:
sudo apt install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
sudo apt install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libdc1394-22-dev
sudo apt install build-essential qt5-default ccache libv4l-dev libavresample-dev libgphoto2-dev libopenblas-base libopenblas-dev doxygen openjdk-8-jdk pylint libvtk6-dev
1、将opencv4.2.0和opencv_contrib-4.2.0解压(提取),放在一个文件夹opencv-4.2.0下,如下图所示:
2、双击进入解压出来的opencv-4.2.0文件夹,右键打开终端(或者在别处打开终端,通过输入cd opencv-4.2.0进入当前目录下),然后依次输入(不要忘了第三行的最后的空格和两个点):
mkdir build
cd build
3.然后进行cmake编译,参数可自行调整:
在build
目录内执行以下命令(注意contrib
路径换成自己的):
下面的参数是带cuda和contrib扩展包的:
cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D INSTALL_PYTHON_EXAMPLES=ON \
-D INSTALL_C_EXAMPLES=ON \
-D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.2.0/modules \
-D PYTHON3_EXECUTABLE=/usr/bin/python3 \
-D PYTHON_EXECUTABLE=/usr/bin/python \
-D WITH_TBB=ON \
-D WITH_V4L=ON \
-D WITH_QT=ON \
-D WITH_GTK=ON \
-D WITH_VTK=ON \
-D WITH_OPENGL=ON \
-D WITH_OPENMP=ON\
-D BUILD_EXAMPLES=ON \
-D WITH_CUDA=ON \
-D BUILD_TIFF=ON \
-D ENABLE_PRECOMPILED_HEADERS=OFF\
-D INSTALL_PYTHON_EXAMPLES=ON \
-D OPENCV_GENERATE_PKGCONFIG=ON \
-DOPENCV_ENABLE_NONFREE=ON \
-D CUDA_nppicom_LIBRARY=stdc++ \
-D CUDA_ARCH_BIN="8.6" ..
CUDA_ARCH_BIN
一般需要指定,且最好不要把所有版本都编译,如CUDA_ARCH_BIN="3.0 3.5 3.7 5.0 5.2 6.0 6.1 7.0 7.5 8.6"
最好根据上面的说明,查一下当前显卡的型号,以及对应的显卡算力,然后在这里指定一个即可,如3060显卡可以保持 CUDA_ARCH_BIN="8.6"
。否则全部编译一遍速度会很慢。
3060显卡不加这条命令: -D CUDA_ARCH_BIN="8.6" ,会报错如下:
nvcc fatal : Unsupported gpu architecture 'compute_30'
CMake Error at cuda_compile_1_generated_gpu_mat.cu.o.RELEASE.cmake:222 (message):
Error generating
/home/cgm/opencv-4.2.0/opencv-4.2.0/build/modules/core/CMakeFiles/cuda_compile_1.dir/src/cuda/./cuda_compile_1_generated_gpu_mat.cu.o
原因: 我的3060显卡不支持compute_30的GPU构架
GPU | Compute Capability |
---|---|
Geforce RTX 3060 | 8.6 |
算力 CUDA GPUs - Compute Capability | NVIDIA Developer
nvcc warning : The 'compute_35', 'compute_37', 'compute_50', 'sm_35', 'sm_37' and 'sm_50' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning).
nvcc警告:“compute_35”、“compute_3 7”、“compute_50”、“sm_35”,“sm_37”和“sm_50”体系结构已弃用,可能会在将来的版本中删除(使用-Wno弃用的gpu目标来抑制警告)。
cuda 11已经废弃 compute_30了,所以需要把compute_30给去掉
CMAKE_INSTALL_PREFIX
指定了编译好的库的目录,也就是说编译完成的OpenCV
库文件会在该目录下OPENCV_GENERATE_PKGCONFIG
指定了生成pkgconfig
配置文件,这个文件在后续创建OpenCV工程的时会很有用。$ pkg-config --cflags --libs opencv4
Package opencv4 was not found in the pkg-config search path.
Perhaps you should add the directory containing `opencv4.pc'
to the PKG_CONFIG_PATH environment variable
No package 'opencv4' found
terminate called after throwing an instance of 'cv::Exception'
what(): OpenCV(4.2.0) /home/cgm/opencv-4.2.0/opencv_contrib-4.2.0/modules/xfeatures2d/src/surf.cpp:1027: error: (-213:The function/feature is not implemented) This algorithm is patented and is excluded in this configuration; Set OPENCV_ENABLE_NONFREE CMake option and rebuild the library in function 'create'
“此算法已获得专利,在此配置中被排除在外;”
“设置OPENCV_ENABLE_NONFREE CMake选项并重建库”);
3.编译成功
最后会列出其编译后的模块列表。
-- OpenCV modules:
-- To be built: aruco bgsegm bioinspired calib3d ccalib core cudaarithm cudabgsegm cudacodec cudafeatures2d cudafilters cudaimgproc cudalegacy cudaobjdetect cudaoptflow cudastereo cudawarping cudev cvv datasets dnn dnn_objdetect dnn_superres dpm face features2d flann freetype fuzzy gapi hdf hfs highgui img_hash imgcodecs imgproc line_descriptor ml objdetect optflow phase_unwrapping photo plot python2 python3 quality reg rgbd saliency sfm shape stereo stitching structured_light superres surface_matching text tracking ts video videoio videostab viz xfeatures2d ximgproc xobjdetect xphoto
-- Disabled: world
-- Disabled by dependency: -
-- Unavailable: cnn_3dobj java js matlab ovis
-- Applications: tests perf_tests examples apps
-- Documentation: NO
-- Non-free algorithms: NO
--
-- GUI:
-- QT: YES (ver 5.12.8)
-- QT OpenGL support: YES (Qt5::OpenGL 5.12.8)
-- GTK+: NO
-- OpenGL support: YES (/usr/lib/x86_64-linux-gnu/libGL.so /usr/lib/x86_64-linux-gnu/libGLU.so)
-- VTK support: YES (ver 7.1.1)
--
-- Media I/O:
-- ZLib: /usr/lib/x86_64-linux-gnu/libz.so (ver 1.2.11)
-- JPEG: /usr/lib/x86_64-linux-gnu/libjpeg.so (ver 80)
-- WEBP: /usr/lib/x86_64-linux-gnu/libwebp.so (ver encoder: 0x020e)
-- PNG: /usr/lib/x86_64-linux-gnu/libpng.so (ver 1.6.37)
-- TIFF: build (ver 42 - 4.0.10)
-- JPEG 2000: build (ver 1.900.1)
-- OpenEXR: build (ver 2.3.0)
-- HDR: YES
-- SUNRASTER: YES
-- PXM: YES
-- PFM: YES
--
-- Video I/O:
-- DC1394: YES (2.2.5)
-- FFMPEG: YES
-- avcodec: YES (58.54.100)
-- avformat: YES (58.29.100)
-- avutil: YES (56.31.100)
-- swscale: YES (5.5.100)
-- avresample: YES (4.0.0)
-- GStreamer: YES (1.16.3)
-- v4l/v4l2: YES (linux/videodev2.h)
--
-- Parallel framework: TBB (ver 2020.1 interface 11101)
--
-- Trace: YES (with Intel ITT)
--
-- Other third-party libraries:
-- Intel IPP: 2019.0.0 Gold [2019.0.0]
-- at: /home/cgm/opencv-4.2.0/opencv-4.2.0/build/3rdparty/ippicv/ippicv_lnx/icv
-- Intel IPP IW: sources (2019.0.0)
-- at: /home/cgm/opencv-4.2.0/opencv-4.2.0/build/3rdparty/ippicv/ippicv_lnx/iw
-- Lapack: NO
-- Eigen: YES (ver 3.3.7)
-- Custom HAL: NO
-- Protobuf: build (3.5.1)
--
-- NVIDIA CUDA: YES (ver 11.4, CUFFT CUBLAS)
-- NVIDIA GPU arch: 30 35 37 50 52 60 61 70 75
-- NVIDIA PTX archs:
--
-- cuDNN: NO
--
-- OpenCL: YES (no extra features)
-- Include path: /home/cgm/opencv-4.2.0/opencv-4.2.0/3rdparty/include/opencl/1.2
-- Link libraries: Dynamic load
--
-- Python 2:
-- Interpreter: /usr/bin/python (ver 2.7.18)
-- Libraries: /usr/lib/x86_64-linux-gnu/libpython2.7.so (ver 2.7.18)
-- numpy: /usr/lib/python2.7/dist-packages/numpy/core/include (ver 1.16.5)
-- install path: lib/python2.7/dist-packages/cv2/python-2.7
--
-- Python 3:
-- Interpreter: /usr/bin/python3 (ver 3.8.10)
-- Libraries: /usr/lib/x86_64-linux-gnu/libpython3.8.so (ver 3.8.10)
-- numpy: /home/cgm/.local/lib/python3.8/site-packages/numpy/core/include (ver 1.23.3)
-- install path: lib/python3.8/dist-packages/cv2/python-3.8
--
-- Python (for build): /usr/bin/python
-- Pylint: /usr/bin/pylint (ver: 3.8.10, checks: 163)
--
-- Java:
-- ant: NO
-- JNI: /usr/lib/jvm/java-8-openjdk-amd64/include /usr/lib/jvm/java-8-openjdk-amd64/include/linux /usr/lib/jvm/java-8-openjdk-amd64/include
-- Java wrappers: NO
-- Java tests: NO
--
-- Install to: /usr/local
-- -----------------------------------------------------------------
--
-- Configuring done
-- Generating done
-- Build files have been written to: /home/cgm/opencv-4.2.0/opencv-4.2.0/build
我们可以发现,我们编译已经成功,可以进行下一步,即make,但是值得注意的是,如果用多核make可能会报错
sudo make -j6
j6表示6核运行,查看自己 CPU 的核数:
# uniq 可以去重连续出现的相同记录
cat /proc/cpuinfo | grep "cpu cores" | uniq
报错:
In file included from /home/cgm/opencv-4.2.0/opencv-4.2.0/modules/python/src2/cv2.cpp:35:
/home/cgm/opencv-4.2.0/opencv-4.2.0/build/modules/python_bindings_generator/pyopencv_generated_include.h:44:10: fatal error: opencv2/viz/types.hpp: 没有那个文件或目录
44 | #include "opencv2/viz/types.hpp"
原因:仔细分析发现这个文件是 /home/cgm/opencv-4.2.0/opencv-4.2.0/modules/python/src2/cv2.cpp第35行包含了一个头文件 #include "pyopencv_generated_include.h"
然后搜索打开这个头文件 pyopencv_generated_include.h发现第44行就是出错没有找到的那个头文件#include "opencv2/viz/types.hpp"
然后make时在 opencv-4.2.0 里没有找到这个头文件,确实也没有,我搜索后发现这个文件在opencv_contrib-4.2.0里面.
/home/cgm/opencv-4.2.0/opencv_contrib-4.2.0/modules/viz/src
解决办法: 将/home/cgm/opencv-4.2.0/opencv_contrib-4.2.0/modules/viz/include/opencv2/viz 添加进 /home/cgm/opencv-4.2.0/opencv-4.2.0/modules/python 的 CMakeLists.txt 里面.
include_directories("/home/cgm/opencv-4.2.0/opencv_contrib-4.2.0/modules/viz/include/opencv2/viz")
再重新cmake和make..........
4.安装
sudo make install
5.安装完成后还要配置环境变量
终端输入或用gedit(替换vim)打开:
sudo gedit /etc/ld.so.conf.d/opencv.conf
在里面添加:
/usr/local/lib
保存退出,配置库:这里报错参考 sudo ldconfig报错
sudo ldconfig
添加修改环境变量
sudo gedit /etc/bash.bashrc
在末尾添加如下内容
PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export PKG_CONFIG_PATH
保存退出,最后source
一下,让更改立即生效:
source ~/.bashrc
这时候测试一下,输入:
pkg-config --cflags --libs opencv4
注意:opencv4以上才是pkg-config --cflags --libs opencv4,之前版本是pkg-config --cflags --libs opencv。
查看结果:
cgm@cgm:~/opencv-4.2.0/opencv-4.2.0/build$ pkg-config --cflags --libs opencv4
-I/usr/local/include/opencv4/opencv -I/usr/local/include/opencv4 -L/usr/local/lib -lopencv_gapi -lopencv_stitching -lopencv_aruco -lopencv_bgsegm -lopencv_bioinspired -lopencv_ccalib -lopencv_cudabgsegm -lopencv_cudafeatures2d -lopencv_cudaobjdetect -lopencv_cudastereo -lopencv_cvv -lopencv_dnn_objdetect -lopencv_dnn_superres -lopencv_dpm -lopencv_highgui -lopencv_face -lopencv_freetype -lopencv_fuzzy -lopencv_hdf -lopencv_hfs -lopencv_img_hash -lopencv_line_descriptor -lopencv_quality -lopencv_reg -lopencv_rgbd -lopencv_saliency -lopencv_sfm -lopencv_stereo -lopencv_structured_light -lopencv_phase_unwrapping -lopencv_superres -lopencv_cudacodec -lopencv_surface_matching -lopencv_tracking -lopencv_datasets -lopencv_text -lopencv_dnn -lopencv_plot -lopencv_videostab -lopencv_cudaoptflow -lopencv_optflow -lopencv_cudalegacy -lopencv_videoio -lopencv_cudawarping -lopencv_viz -lopencv_xfeatures2d -lopencv_shape -lopencv_ml -lopencv_ximgproc -lopencv_video -lopencv_xobjdetect -lopencv_objdetect -lopencv_calib3d -lopencv_imgcodecs -lopencv_features2d -lopencv_flann -lopencv_xphoto -lopencv_photo -lopencv_cudaimgproc -lopencv_cudafilters -lopencv_imgproc -lopencv_cudaarithm -lopencv_core -lopencv_cudev
我安装这个的目的暂时是为了运行 SIFT,SURE,FREAK特征提取算法.
你们可以去测试自己的.
TO BE CONTINUED...