- Python中的深度学习神经网络
2301_78297473
深度学习python神经网络
文章目录1.引言-简介-深度学习与Python的关系2.神经网络的原理-神经网络基础知识-Python中的神经网络库与工具-构建与训练神经网络模型的步骤深度学习训练过程3.卷积神经网络的原理-卷积层与池化层-特征提取与全连接层-Python中的CNN库与工具4.Python中深度学习的挑战和未来发展方向-计算资源与速度-迁移学习与模型压缩-融合多种深度学习算法1.引言-简介深度学习是机器学习的一个
- 一文读懂深度适配网络(DAN)
weixin_34088838
人工智能
这周五下午约见了机器学习和迁移学习大牛、清华大学的龙明盛老师。老师为人非常nice,思维敏捷,非常健谈!一不留神就谈了1个多小时,意犹未尽,学到了很多东西!龙明盛老师在博士期间(去年博士毕业)发表的文章几乎全部是A类顶会,他在学期间与世界知名学者杨强、PhilipS.Yu及MichaelI.Jordan多次合作,让我非常膜拜!这次介绍他在ICML-15上提出的深度适配网络。深度适配网络(DeepA
- 迁移学习之领域泛化
踩着上帝的小丑
#RL迁移学习人工智能机器学习
领域泛化领域泛化(DomainGeneralization)是机器学习和计算机视觉中的一个重要概念,它指的是模型能够从一个或多个源领域(sourcedomains)学习到的知识或模式,成功地应用到与训练时未见过的目标领域(targetdomain)上,即使这些领域之间存在分布差异。简单来说,领域泛化就是希望模型能够“举一反三”,不仅限于在特定数据集或特定环境下表现良好,而是能够跨越不同的环境或数据
- 23 注意力机制—BERT
Unknown To Known
动手学习深度学习bert人工智能深度学习
目录BERT预训练NLP里的迁移学习BERTBERT动机BERT预训练NLP里的迁移学习在计算机视觉中比较流行,将ImageNet或者更大的数据集上预训练好的模型应用到其他任务中,比如小数据的预测、图片分类或者是目标检测使用预训练好的模型(例如word2vec或语言模型)来抽取词、句子的特征做迁移学习的时候,一般不更新预训练好的模型在更换任务之后,还是需要构建新的网络来抓取新任务需要的信息使用预训
- Unet 高阶分割网络实战、多类别分割、迁移学习(deeplab、resnet101等等)
听风吹等浪起
图像分割计算机视觉人工智能
1、前言Unet图像分割之前介绍了不少,具体可以参考图像分割专栏为了实现多类别的自适应分割,前段时间利用numpy的unique函数实现了一个项目。通过numpy函数将mask的灰度值提取出来,保存在txt文本里,这样txt里面就会有类似012...等等的灰度值。而有几个灰度值,就代表分割要分出几个类别。具体可以参考:Unet实战分割项目、多尺度训练、多类别分割将vgg换成resnet的unet参
- 探索XGBoost:深度集成与迁移学习
Echo_Wish
Python笔记Python算法迁移学习机器学习人工智能
导言深度集成与迁移学习是机器学习领域中的两个重要概念,它们可以帮助提高模型的性能和泛化能力。本教程将详细介绍如何在Python中使用XGBoost进行深度集成与迁移学习,包括模型集成、迁移学习的概念和实践等,并提供相应的代码示例。模型集成模型集成是一种通过组合多个模型来提高性能的技术。XGBoost提供了集成多个弱学习器的功能,可以通过设置booster参数来选择集成模型。以下是一个简单的示例:i
- 机器学习、深度学习、强化学习、迁移学习的关联与区别
半亩花海
学习笔记机器学习深度学习迁移学习学习人工智能
Hi,大家好,我是半亩花海。本文主要了解并初步探究机器学习、深度学习、强化学习、迁移学习的关系与区别,通过清晰直观的关系图展现出四种“学习”之间的关系。虽然这四种“学习”方法在理论和应用上存在着一定的区别,但它们之间也存在交叉和重叠,有时候也会结合使用来解决实际问题。一、四种“学习”1.机器学习机器学习是人工智能的一个子领域,研究如何让计算机系统利用数据和经验,来不断改善和优化自身的性能。其核心思
- 预训练和微调在迁移学习中的作用
一条小小yu
迁移学习人工智能机器学习
在机器学习和深度学习中,"pre-training"(预训练)和"fine-tuning"(微调)是两个常见且重要的概念,它们通常在迁移学习场景中使用,以提高模型在特定任务上的性能。预训练(Pre-training)预训练是指在一个大型且通常与目标任务相关但不完全相同的数据集上训练模型的过程。这个阶段的目的是让模型学习到一些通用的特征或知识,这些特征或知识可以帮助模型在后续的特定任务上表现更好。预
- Python环境下基于深度判别迁移学习网络的轴承故障诊断
哥廷根数学学派
故障诊断信号处理深度学习python迁移学习开发语言
目前很多机器学习和数据挖掘算法都是基于训练数据和测试数据位于同一特征空间、拥有相同数据分布的假设。然而在现实应用中,该假设却未必存在。一方面,如果将利用某一领域数据训练得到的模型直接应用于新的目标领域,领域之间切实存在的数据差异可能会导致模型效果的骤然下降。另一方面,如果直接在新的目标领域中进行模型的训练,其数据的稀缺和标注的不完整可能会导致监督学习出现严重的过拟合问题,难以达到令人满意的学习效果
- 【深度学习:迁移学习】图像识别预训练模型的迁移学习
jcfszxc
深度学习知识专栏深度学习迁移学习人工智能
【深度学习:迁移学习】图像识别预训练模型的迁移学习什么是迁移学习?为什么不从头开始训练模型?迁移学习的优点是:如何使用预训练模型进行迁移学习:迁移学习的过程:实施迁移学习来构建人脸识别模型:模型的构建分为3个步骤:1.导入预训练模型并添加密集层。2.将训练数据加载到图像数据生成器中。3.通过预测验证数据标签加载训练模型和模型评估结论:本文的目的是使用迁移学习快速、轻松地解决图像识别问题。为了演示,
- 【前沿技术杂谈:迁移学习】欧洲人工智能法案对人工智能开发者的意义 [2023 年 12 月更新]
jcfszxc
深度学习知识专栏人工智能迁移学习机器学习
【前沿技术杂谈:迁移学习】欧洲人工智能法案对人工智能开发者的意义[2023年12月更新]定义、一般原则和禁止做法人工智能系统开发者基于风险的义务固定和通用人工智能开发人员(第3/28条)基础模型的提供者(第28b条)生成人工智能模型的提供商(第28b4条)高风险人工智能系统和分类(第6/7条)治理和执行12月修正案和批准最后的评论TL;DRAI窥视,准备迎接冲击!欧盟人工智能法案即将推出,这是世界
- 低资源学习与知识图谱:构建与应用
cooldream2009
AI技术知识图谱知识图谱人工智能低资源
目录前言1低资源学习方法1.1数据增强1.2特征增强1.3模型增强2低资源知识图谱构建与推理2.1元关系学习2.2对抗学习2.3零样本关系抽取2.4零样本学习与迁移学习2.5零样本学习与辅助信息3基于知识图谱的低资源学习应用3.1零样本图像分类3.2知识增强的零样本学习3.3语义与知识信息的利用结语前言在当今人工智能领域,低资源学习成为一个备受关注的话题,尤其是在少样本学习和零样本学习方面。这种学
- 深度学习之迁移学习实现神奇宝贝识别
starlet_kiss
机器学习深度学习人工智能迁移学习
经过之前深度学习的实践,无论是自己搭建的CNN网络也好,还是通过迁移学习调用官方的网络模型也好,都有其优点以及不足。本次实验通过对各种常用的CNN网络模型进行调用,了解一下它们的特点,对比一下在对于同一数据集进行分类时的准确率。本次所调用的CNN模型有:VGG16VGG19ResNetDensenet模型1.导入库importtensorflowastfimportnumpyasnpimportm
- LLM大模型常见问题解答(2)
lichunericli
LLM人工智能语言模型
对大模型基本原理和架构的理解大型语言模型如GPT(GenerativePre-trainedTransformer)系列是基于自注意力机制的深度学习模型,主要用于处理和生成人类语言。基本原理自然语言理解:模型通过对大量文本数据的预训练,学习到语言的统计规律,从而能够在不同的语言任务上表现出自然语言理解的能力。迁移学习:GPT类模型首先在一个广泛的数据集上进行预训练,以掌握语言的通用表示,然后可以在
- 大模型注入领域知识,模型体验和Token重复知识
lichunericli
LLM人工智能语言模型
1如何给LLM注入领域知识?给LLM(低层次模型,如BERT、GPT等)注入领域知识的方法有很多。以下是一些建议:数据增强:在训练过程中,可以通过添加领域相关的数据来增强模型的训练数据。这可以包括从领域相关的文本中提取示例、对现有数据进行扩充或生成新的数据。迁移学习:使用预训练的LLM模型作为基础,然后在特定领域的数据上进行微调。这样可以利用预训练模型学到的通用知识,同时使其适应新领域。领域专家标
- 深度学习基础
EEPI
深度学习人工智能
深度学习基础highvariance/datamismatchwhatisdatamismatchhowtosolvedatamismatchdatasynthesis数据合成迁移学习与预训练/微调什么时候用迁移学习highvariance/datamismatchwhatisdatamismatch如果训练集和验证集的loss不一样,且验证集的loss高很多,有2种原因:1.方差太大。模型没见过
- 基于NSGA-II的深度迁移学习
代码缝合怪
机器学习+深度学习迁移学习人工智能机器学习
深度迁移学习迁移学习是一种机器学习技术,它允许一个预训练的模型被用作起点,在此基础上进行微调以适应新的任务或数据。其核心思想是利用从一个任务中学到的知识来帮助解决另一个相关的任务,即使这两个任务的数据分布不完全相同。这种方法可以加速学习过程,提高模型性能,并减少对新数据标注的依赖。为什么要迁移大数据与少标注的矛盾在大数据的时代背景下,我们所面临的数据量呈现爆炸性增长,同时数据类型也变得日益复杂多样
- Tensorflow2.0 查看网络中每层的名称、权重及特征图绘制
cofisher
Tensorflow2.0深度学习PHM项目实战--建模篇深度学习pythontensorflow
文章目录项目介绍实现过程1、构建网络2、查看每层名称3、查看指定层的权值4、特征图绘制项目介绍在网络训练过程中,我们经常需要查看某层权重的变化过程,这其实只需要简单的API就能实现。为了方便演示,我们使用迁移学习到的MobileNetV2网络。实现过程1、构建网络我们将冻结迁移到的MobileNetV2网络,然后将它最后的分类层换成我们自己定义的分类层即可。mobile=tf.keras.appl
- Tensorflow2.0 评价模型复杂度:参数量、FLOPs 和 MACC 计算
cofisher
深度学习PHM项目实战--建模篇tensorflow深度学习卷积python
文章目录项目介绍代码实现:对于迁移学习网络(复杂)1、迁移学习不带分类层的简化版MobileNetV2网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC代码实现:对于自编写网络(简单)1、导入网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC项目介绍在论文写作时,我们经常会对所提出模型的复杂度进行分析,主要用到的评价指标包括参数量、FLOPs和MACC,它们的计
- 【PyTorch】实现迁移学习框架DaNN
cofisher
PHM项目实战--建模篇PyTorchpytorch迁移学习人工智能
文章目录前言代码实现1、导入数据库关于torch.manual_seed(1)2、参数设置3、数据导入4、定义MMD损失5、定义训练函数5.1nn.CrossEntropyLoss()5.2.detach()5.3.sizeVS.shape5.4.to(DEVICE)5.5.max()5.6optimizer.zero_grad()
- 论文笔记:NIPS 2020 Graph Contrastive Learning with Augmentations
饮冰l
图弱监督数据挖掘机器学习神经网络深度学习
前言本文主要提出在图对比学习大框架下的图数据增强的若干方法。概括来说,本文提出了一种图对比学习框架来无监督的完成图表示学习,首先作者提出了基于各种先验信息的四种图数据增强方法。然后,作者分析了在四种不同的图数据增强条件下,不同组合对多个数据集的影响:半监督、无监督、迁移学习以及对抗性攻击。作者为GNN的预训练提出了基于图数据增强的对比学习框架来解决图中数据异质性的挑战,本文的主要贡献如下:作者提出
- 【多模态大模型】GLIP:零样本学习 + 目标检测 + 视觉语言大模型
Debroon
医学大模型:健康长寿学习目标检测人工智能
GLIP核心思想GLIP对比BLIP、BLIP-2、CLIP主要问题:如何构建一个能够在不同任务和领域中以零样本或少样本方式无缝迁移的预训练模型?统一的短语定位损失语言意识的深度融合预训练数据类型的结合语义丰富数据的扩展零样本和少样本迁移学习效果论文:https://arxiv.org/pdf/2112.03857.pdf代码:https://github.com/microsoft/GLIP核心
- 【PyTorch】实现迁移学习框架DANN
cofisher
PyTorchPHM项目实战--建模篇pytorch迁移学习人工智能
文章目录前言代码实现1、导入数据库关于torch.manual_seed(1)2、参数设置3、数据导入4、定义训练函数4.1nn.CrossEntropyLoss()4.2.detach()4.3.sizeVS.shape4.4.to(DEVICE)4.5.max()4.6optimizer.zero_grad()4.7len(data
- PyTorch 2.2 中文官方教程(十五)
绝不原创的飞龙
人工智能pytorch人工智能python
(beta)计算机视觉的量化迁移学习教程原文:pytorch.org/tutorials/intermediate/quantized_transfer_learning_tutorial.html译者:飞龙协议:CCBY-NC-SA4.0提示为了充分利用本教程,我们建议使用这个Colab版本。这将允许您尝试下面提供的信息。作者:ZafarTakhirov审阅者:RaghuramanKrishna
- Python 处理小样本数据的文档分类问题
田猿笔记
python知识库分类人工智能数据挖掘
在处理小样本数据的文档分类问题时,可以尝试使用迁移学习或者基于预训练模型的方法,如BERT、GPT等。然而,直接在这里编写一个完整的深度学习文档分类代码超出了这个平台的限制,但我可以为你提供一个基本的思路和简单示例,你可以根据这个思路进一步研究并实现。#导入必要的库fromtransformersimportBertTokenizer,BertForSequenceClassificationim
- 【文本到上下文 #10】探索地平线:GPT 和 NLP 中大型语言模型的未来
无水先生
NLP高级和ChatGPT人工智能自然语言处理gpt语言模型
一、说明 欢迎阅读我们【文本到上下文#10】:此为最后一章。以我们之前对BERT和迁移学习的讨论为基础,将重点转移到更广阔的视角,包括语言模型的演变和未来,特别是生成式预训练转换器(GPT)及其在NLP中的重要作用。 在最后一章中,我们将探讨:语言模型概述:了解它们在NLP中的作用和演变。GPT模型:深入研究GPT谱系及其影响。大型语言模型(LLM):揭示潜力和挑战。现实世界的NLP应用:这些
- AI预测-注意力机制/多头注意力机制及其tensorflow实现
写代码的中青年
AI预测人工智能tensorflowpython深度学习keras
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transformer模型及Paddle实现迁移学习在预测任务上的tensoflow2.0实现holt提取时序序列特征TCN时
- AI预测-迁移学习在时序预测任务上的tensoflow2.0实现
写代码的中青年
AI预测人工智能迁移学习机器学习神经网络pythontensorflow
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transformer模型及Paddle实现迁移学习在预测任务上的tensoflow2.0实现文章目录AI预测相关目录一、迁移
- 迁移学习Transfer Learning的优缺点,以及在使用迁移学习的注意事项!
小桥流水---人工智能
机器学习算法Python程序代码迁移学习人工智能机器学习
迁移学习TransferLearning1.迁移学习的优点和缺点:2.使用迁移学习时,需要解决以下问题:1.迁移学习的优点和缺点:迁移学习是一种机器学习方法,它可以使机器学习模型利用已有任务的学习结果,来帮助解决相似的新任务。优点:知识转移:迁移学习的核心思想是将在一个领域学到的知识应用到另一个领域。这使得我们可以在已有的数据集上训练模型,然后将这个模型应用到新的、不同的数据集上。避免重新训练:对
- 迁移学习实现图片分类任务
Cuteboom
迁移学习分类人工智能
导入工具包importtimeimportosimportnumpyasnpfromtqdmimporttqdmimporttorchimporttorchvisionimporttorch.nnasnnimporttorch.nn.functionalasFimportmatplotlib.pyplotasplt%matplotlibinline#忽略烦人的红色提示importwarningsw
- 异常的核心类Throwable
无量
java源码异常处理exception
java异常的核心是Throwable,其他的如Error和Exception都是继承的这个类 里面有个核心参数是detailMessage,记录异常信息,getMessage核心方法,获取这个参数的值,我们可以自己定义自己的异常类,去继承这个Exception就可以了,方法基本上,用父类的构造方法就OK,所以这么看异常是不是很easy
package com.natsu;
- mongoDB 游标(cursor) 实现分页 迭代
开窍的石头
mongodb
上篇中我们讲了mongoDB 中的查询函数,现在我们讲mongo中如何做分页查询
如何声明一个游标
var mycursor = db.user.find({_id:{$lte:5}});
迭代显示游标数
- MySQL数据库INNODB 表损坏修复处理过程
0624chenhong
tomcatmysql
最近mysql数据库经常死掉,用命令net stop mysql命令也无法停掉,关闭Tomcat的时候,出现Waiting for N instance(s) to be deallocated 信息。查了下,大概就是程序没有对数据库连接释放,导致Connection泄露了。因为用的是开元集成的平台,内部程序也不可能一下子给改掉的,就验证一下咯。启动Tomcat,用户登录系统,用netstat -
- 剖析如何与设计人员沟通
不懂事的小屁孩
工作
最近做图烦死了,不停的改图,改图……。烦,倒不是因为改,而是反反复复的改,人都会死。很多需求人员不知该如何与设计人员沟通,不明白如何使设计人员知道他所要的效果,结果只能是沟通变成了扯淡,改图变成了应付。
那应该如何与设计人员沟通呢?
我认为设计人员与需求人员先天就存在语言障碍。对一个合格的设计人员来说,整天玩的都是点、线、面、配色,哪种构图看起来协调;哪种配色看起来合理心里跟明镜似的,
- qq空间刷评论工具
换个号韩国红果果
JavaScript
var a=document.getElementsByClassName('textinput');
var b=[];
for(var m=0;m<a.length;m++){
if(a[m].getAttribute('placeholder')!=null)
b.push(a[m])
}
var l
- S2SH整合之session
灵静志远
springAOPstrutssession
错误信息:
Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'cartService': Scope 'session' is not active for the current thread; consider defining a scoped
- xmp标签
a-john
标签
今天在处理数据的显示上遇到一个问题:
var html = '<li><div class="pl-nr"><span class="user-name">' + user
+ '</span>' + text + '</div></li>';
ulComme
- Ajax的常用技巧(2)---实现Web页面中的级联菜单
aijuans
Ajax
在网络上显示数据,往往只显示数据中的一部分信息,如文章标题,产品名称等。如果浏览器要查看所有信息,只需点击相关链接即可。在web技术中,可以采用级联菜单完成上述操作。根据用户的选择,动态展开,并显示出对应选项子菜单的内容。 在传统的web实现方式中,一般是在页面初始化时动态获取到服务端数据库中对应的所有子菜单中的信息,放置到页面中对应的位置,然后再结合CSS层叠样式表动态控制对应子菜单的显示或者隐
- 天-安-门,好高
atongyeye
情感
我是85后,北漂一族,之前房租1100,因为租房合同到期,再续,房租就要涨150。最近网上新闻,地铁也要涨价。算了一下,涨价之后,每次坐地铁由原来2块变成6块。仅坐地铁费用,一个月就要涨200。内心苦痛。
晚上躺在床上一个人想了很久,很久。
我生在农
- android 动画
百合不是茶
android透明度平移缩放旋转
android的动画有两种 tween动画和Frame动画
tween动画;,透明度,缩放,旋转,平移效果
Animation 动画
AlphaAnimation 渐变透明度
RotateAnimation 画面旋转
ScaleAnimation 渐变尺寸缩放
TranslateAnimation 位置移动
Animation
- 查看本机网络信息的cmd脚本
bijian1013
cmd
@echo 您的用户名是:%USERDOMAIN%\%username%>"%userprofile%\网络参数.txt"
@echo 您的机器名是:%COMPUTERNAME%>>"%userprofile%\网络参数.txt"
@echo ___________________>>"%userprofile%\
- plsql 清除登录过的用户
征客丶
plsql
tools---preferences----logon history---history 把你想要删除的删除
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一起进步。
email : binary_spac
- 【Pig一】Pig入门
bit1129
pig
Pig安装
1.下载pig
wget http://mirror.bit.edu.cn/apache/pig/pig-0.14.0/pig-0.14.0.tar.gz
2. 解压配置环境变量
如果Pig使用Map/Reduce模式,那么需要在环境变量中,配置HADOOP_HOME环境变量
expor
- Java 线程同步几种方式
BlueSkator
volatilesynchronizedThredLocalReenTranLockConcurrent
为何要使用同步? java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查), 将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用, 从而保证了该变量的唯一性和准确性。 1.同步方法&
- StringUtils判断字符串是否为空的方法(转帖)
BreakingBad
nullStringUtils“”
转帖地址:http://www.cnblogs.com/shangxiaofei/p/4313111.html
public static boolean isEmpty(String str)
判断某字符串是否为空,为空的标准是 str==
null
或 str.length()==
0
- 编程之美-分层遍历二叉树
bylijinnan
java数据结构算法编程之美
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
public class LevelTraverseBinaryTree {
/**
* 编程之美 分层遍历二叉树
* 之前已经用队列实现过二叉树的层次遍历,但这次要求输出换行,因此要
- jquery取值和ajax提交复习记录
chengxuyuancsdn
jquery取值ajax提交
// 取值
// alert($("input[name='username']").val());
// alert($("input[name='password']").val());
// alert($("input[name='sex']:checked").val());
// alert($("
- 推荐国产工作流引擎嵌入式公式语法解析器-IK Expression
comsci
java应用服务器工作Excel嵌入式
这个开源软件包是国内的一位高手自行研制开发的,正如他所说的一样,我觉得它可以使一个工作流引擎上一个台阶。。。。。。欢迎大家使用,并提出意见和建议。。。
----------转帖---------------------------------------------------
IK Expression是一个开源的(OpenSource),可扩展的(Extensible),基于java语言
- 关于系统中使用多个PropertyPlaceholderConfigurer的配置及PropertyOverrideConfigurer
daizj
spring
1、PropertyPlaceholderConfigurer
Spring中PropertyPlaceholderConfigurer这个类,它是用来解析Java Properties属性文件值,并提供在spring配置期间替换使用属性值。接下来让我们逐渐的深入其配置。
基本的使用方法是:(1)
<bean id="propertyConfigurerForWZ&q
- 二叉树:二叉搜索树
dieslrae
二叉树
所谓二叉树,就是一个节点最多只能有两个子节点,而二叉搜索树就是一个经典并简单的二叉树.规则是一个节点的左子节点一定比自己小,右子节点一定大于等于自己(当然也可以反过来).在树基本平衡的时候插入,搜索和删除速度都很快,时间复杂度为O(logN).但是,如果插入的是有序的数据,那效率就会变成O(N),在这个时候,树其实变成了一个链表.
tree代码:
- C语言字符串函数大全
dcj3sjt126com
cfunction
C语言字符串函数大全
函数名: stpcpy
功 能: 拷贝一个字符串到另一个
用 法: char *stpcpy(char *destin, char *source);
程序例:
#include <stdio.h>
#include <string.h>
int main
- 友盟统计页面技巧
dcj3sjt126com
技巧
在基类调用就可以了, 基类ViewController示例代码
-(void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[MobClick beginLogPageView:[NSString stringWithFormat:@"%@",self.class]];
- window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
flyvszhb
javajdk
window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
本机已经安装了jdk1.7,而比较早期的项目需要依赖jdk1.6,于是同时在本机安装了jdk1.6和jdk1.7.
安装jdk1.6前,执行java -version得到
C:\Users\liuxiang2>java -version
java version "1.7.0_21&quo
- Java在创建子类对象的同时会不会创建父类对象
happyqing
java创建子类对象父类对象
1.在thingking in java 的第四版第六章中明确的说了,子类对象中封装了父类对象,
2."When you create an object of the derived class, it contains within it a subobject of the base class. This subobject is the sam
- 跟我学spring3 目录贴及电子书下载
jinnianshilongnian
spring
一、《跟我学spring3》电子书下载地址:
《跟我学spring3》 (1-7 和 8-13) http://jinnianshilongnian.iteye.com/blog/pdf
跟我学spring3系列 word原版 下载
二、
源代码下载
最新依
- 第12章 Ajax(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BI and EIM 4.0 at a glance
blueoxygen
BO
http://www.sap.com/corporate-en/press.epx?PressID=14787
有机会研究下EIM家族的两个新产品~~~~
New features of the 4.0 releases of BI and EIM solutions include:
Real-time in-memory computing –
- Java线程中yield与join方法的区别
tomcat_oracle
java
长期以来,多线程问题颇为受到面试官的青睐。虽然我个人认为我们当中很少有人能真正获得机会开发复杂的多线程应用(在过去的七年中,我得到了一个机会),但是理解多线程对增加你的信心很有用。之前,我讨论了一个wait()和sleep()方法区别的问题,这一次,我将会讨论join()和yield()方法的区别。坦白的说,实际上我并没有用过其中任何一个方法,所以,如果你感觉有不恰当的地方,请提出讨论。
&nb
- android Manifest.xml选项
阿尔萨斯
Manifest
结构
继承关系
public final class Manifest extends Objectjava.lang.Objectandroid.Manifest
内部类
class Manifest.permission权限
class Manifest.permission_group权限组
构造函数
public Manifest () 详细 androi
- Oracle实现类split函数的方
zhaoshijie
oracle
关键字:Oracle实现类split函数的方
项目里需要保存结构数据,批量传到后他进行保存,为了减小数据量,子集拼装的格式,使用存储过程进行保存。保存的过程中需要对数据解析。但是oracle没有Java中split类似的函数。从网上找了一个,也补全了一下。
CREATE OR REPLACE TYPE t_split_100 IS TABLE OF VARCHAR2(100);
cr