- DeepSeek+Dify 轻松搞定从 0 到 1 搭建专属本地知识库
LCG元
大模型人工智能
目录**1.安装和配置Ollama****1.1跨平台安装指南****验证安装****1.2部署DeepSeek模型****下载模型****加载模型****验证模型功能****2.安装和配置Dify****2.1安装Docker****2.2安装Dify****克隆源码****启动容器****配置环境变量****3.构建和部署本地知识库****3.1创建知识库****上传文档****管理内容***
- 大模型产品Deepseek(三)、API 调用指南
伯牙碎琴
大模型DeepseekAI大模型
DeepSeekAPI调用指南DeepSeek作为一款高效的智能搜索与推荐引擎,为开发者提供了简洁易用的API接口,使得将其集成到各种应用场景中变得更加高效和便捷。在这一章节中,我们将详细介绍如何通过API调用DeepSeek,包括如何进行身份验证、如何提交请求、如何解析响应以及如何通过代码实现基本的搜索与推荐功能。1.DeepSeekAPI概述DeepSeek作为一款高效的智能搜索与推荐引擎,通
- 箭头函数的this指向谁
是小傲雨呀^_^
vue.js前端javascript
先看1个重要原则:由Vue管理的函数,一定不要写箭头函数,箭头函数的this就不再是Vue实例了箭头函数的this指向在定义时确定,继承自外层作用域(即定义时的上下文)的this,且无法通过call、apply或bind改变。以下是关键点总结:1.词法作用域的this箭头函数没有自己的this,它使用外层非箭头函数作用域的this值。若外层没有函数,则指向全局对象(如window或global)。
- 第N11周:seq2seq翻译实战-Pytorch复现
计算机真好丸
pytorch人工智能python
文章目录一、前期准备1.搭建语言类2.文本处理函数3.文件读取函数二、Seq2Seq模型1.编码器(encoder)2.解码器(decoder)三、训练1.数据预处理2.训练函数3.评估四、评估与训练1.Loss图2.可视化注意力五、总结本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备from__future__importunicode_literals,print_fu
- 第N5周:Pytorch文本分类入门
计算机真好丸
pytorch分类人工智能
文章目录一、前期准备1.环境安装2.加载数据3.构建词典4.生成数据批次和迭代器二、准备模型1.定义模型2.定义实例三、训练模型1.拆分数据集并运行模型2.使用测试数据集评估模型本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备1.环境安装确保安装了torchtext与portalocker库2.加载数据importtorch#强制使用CPUdevice=torch.devi
- 第TR5周:Transformer实战:文本分类
计算机真好丸
transformer分类深度学习
文章目录1.准备环境1.1环境安装1.2加载数据2.数据预处理2.1构建词典2.2生成数据批次和迭代器2.3构建数据集3.模型构建3.1定义位置编码函数3.2定义Transformer模型3.3初始化模型3.4定义训练函数3.5定义评估函数4.训练模型4.1模型训练5.总结:本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.准备环境1.1环境安装这是一个使用PyTorch通过Tran
- 知识图谱大模型系列之 11什么是 Neo4j LLM 知识图谱构建器?
知识大胖
NVIDIAGPU和大语言模型开发教程知识图谱neo4j人工智能llm
简介LLM知识图谱构建器是Neo4j的GraphRAG生态系统工具之一,可让您将非结构化数据转换为动态知识图谱。它与检索增强生成(RAG)聊天机器人集成,可实现自然语言查询和对数据的可解释洞察。推荐文章《使用ChatGPT从视频脚本创建知识图谱,使用GPT-4作为领域专家来帮助您从视频转录中提取知识(教程含完整源码)》权重2,知识图谱类《赋能知识图谱形成:利用BERTopic、DataMapPlo
- AI大模型的技术突破与传媒行业变革
AIQL
行业分析人工智能传媒
性能与成本:AI大模型的“双轮驱动”过去几年,AI大模型的发展经历了从实验室到产业化的关键转折。2025年初,以DeepSeekR1为代表的模型在数学推理、代码生成等任务中表现超越国际头部产品,而训练成本仅为传统模型的几十分之一。这一突破的核心在于三大技术创新:MoE架构升级:通过部署256个细粒度专家网络,减少知识冗余,提升模型效率;MLA注意力机制:动态压缩推理过程中的缓存需求,降低GPU内存
- 工控网络安全学习路线
206333308
安全
一、基础技能编程语言:从汇编语言开始学习,了解底层机器指令和内存管理等基础知识。接着学习C/C++,掌握面向过程和面向对象编程的基本概念和技术,为后续的漏洞挖掘和底层分析打下基础。最后学习Python,它在安全领域应用广泛,可用于自动化脚本编写、漏洞扫描和数据分析等。《计算机网络原理》:掌握网络通信的基本原理,包括OSI七层模型、TCP/IP协议栈、IP地址分配、子网掩码等。了解网络拓扑结构、路由
- 大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统_bert+lstm
2301_76348014
程序员深度学习大数据知识图谱
文章目录大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介NavicatPremium15简介Layui简介Python语言介绍MySQL数据库深度学习六、核心理论贪心算法A
- 【K8S系列】Kubernetes 集群中的网络常见面试题
颜淡慕潇
K8S系列深入解析K8S网络kubernetes云原生集群网络
在Kubernetes面试中,网络是一个重要的主题。理解Kubernetes网络模型、服务发现、网络策略等概念对候选人来说至关重要。以下是一些常见的Kubernetes网络面试题及其答案,帮助你准备面试。1.Kubernetes的网络模型是什么样的?问题:Kubernetes的网络模型是怎样的?答案:Kubernetes网络模型遵循“每个Pod都有一个唯一的IP地址”的原则。每个Pod都可以直接通
- DeepSeek进阶开发与应用1:DeepSeek框架概述与基础应用
Evaporator Core
#DeepSeek快速入门DeepSeek进阶开发与应用spring自然语言处理
引言在当今的人工智能领域,深度学习技术已经成为了推动技术进步的核心动力之一。DeepSeek作为一个先进的深度学习框架,旨在为开发者和研究人员提供一个高效、灵活且易于扩展的平台,以便于他们能够快速地实现和部署各种深度学习模型。本文将深入探讨DeepSeek框架的核心架构、基础应用以及如何通过代码实现一个简单的深度学习模型。DeepSeek框架概述DeepSeek框架的设计理念是简洁而强大。它提供了
- 直肠癌远处转移预测模型临床影响力研究Protocol
医学AppMatrix
预测模型构建和评价人工智能大数据机器学习
直肠癌远处转移预测模型临床影响力研究Protocol举例说明AI工具,包括LLM模型和临床预测模型,的临床影响力研究的流程,这是AI工具进入临床实践之前必要的评估流程,如果AI工具与现有的临床工具相比,有正面的临床影响力,即可以使患者收益或者提高效率、节约资源,才可以进入临床实践。需要说明的是,AI工具的临床影响力也可能是负面的,所以临床影响力研究的初期,需要小规模的研究以确定AI工具不是有害的。
- hunyuan-DiT模型部署指南
算家云
模型构建ComfyUI图片生成大模型人工智能pytorchAIGC
一、介绍Hunyuan-DiT是由腾讯混元推出的扩散模型,支持中文和英文双语输入,其他开源模型相比,Hunyuan-DiT在中文到图像生成方面树立了新的水平。二、部署流程环境要求:所需的最小GPU内存为11GB,建议使用具有32GB内存的GPU,以获得更好的生成质量。1.部署ComfyUI本篇的模型部署是在ComfyUI的基础上进行,如果没有部署过ComfyUI,请按照下面流程先进行部署,如已安装
- 深度剖析DeepSeek本地部署:技术、实践与优化策略
Abossss
AI论文pythonai人工智能
一、引言1.1研究背景与意义近年来,人工智能技术以迅猛之势蓬勃发展,成为推动各行业变革的核心力量。其中,大语言模型(LLMs)作为人工智能领域的关键技术,在自然语言处理、智能客服、内容创作等众多领域展现出了强大的应用潜力,引发了学术界和产业界的广泛关注。OpenAI的GPT系列模型凭借其出色的语言理解与生成能力,在全球范围内掀起了AI应用的热潮;Google的BERT模型则在自然语言理解任务中取得
- 神经网络常见激活函数 12-Swish函数
亲持红叶
神经网络常见激活函数神经网络机器学习人工智能
Swish函数+导函数Swish函数Swish(x)=x⋅σ(βx)=x1+e−βx\begin{aligned}\rmSwish(x)&=x\cdot\sigma(\betax)\\&=\frac{x}{1+e^{-\betax}}\end{aligned}Swish(x)=x⋅σ(βx)=1+e−βxxSwish函数导数ddxSwish=(x⋅σ(βx))′=σ(βx)+x⋅(σ(βx))′∵
- DeepSeek+WPS/Office手把手教你玩转智能办公
herosunly
DeepSeek从入门到精通deepseek大模型人工智能officewps智能办公
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法Q大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 使用Python实现深度学习模型:知识蒸馏与模型压缩
Echo_Wish
Python笔记从零开始学Python人工智能Python算法python深度学习开发语言
在深度学习领域,模型的大小和计算复杂度常常是一个挑战。知识蒸馏(KnowledgeDistillation)和模型压缩(ModelCompression)是两种有效的技术,可以在保持模型性能的同时减少模型的大小和计算需求。本文将详细介绍如何使用Python实现这两种技术。目录引言知识蒸馏概述模型压缩概述实现步骤数据准备教师模型训练学生模型训练(知识蒸馏)模型压缩代码实现结论1.引言在实际应用中,深
- Apache ZooKeeper 分布式协调服务
slovess
分布式apachezookeeper
1.ZooKeeper概述1.1定义与定位核心定位:分布式系统的协调服务,提供强一致性的配置管理、命名服务、分布式锁和集群管理能力核心模型:基于树形节点(ZNode)的键值存储,支持Watcher监听机制生态地位:Hadoop/Kafka等生态核心依赖,分布式系统基础设施级组件1.2设计目标强一致性:所有节点数据最终一致(基于ZAB协议)高可用性:集群半数以上节点存活即可提供服务顺序性:全局唯一递
- 基于遗传算法求解带有时间窗、车载容量限制、多车辆、单配送中心路径优化VRPTW(多约束)matlab代码
天天Matlab科研工作室
智能优化算法matlab仿真无人机matlab仿真电子资源matlab算法自动驾驶
1数学模型(1)有关模型的说明和假设1)模型中的已知量有:各需求点的位置坐标、各需求点的物料需求数量,各需求点的物料的到达时间要求,配送中心到各需求点的最短行驶距离,各需求点互相之间的最短运输距离。2)现场调查发现,需要配送的物料是可以混装在同一物料架上的,且各需求点需要的物料数量小于物料仓库的库存量。3)忽略在配送过程中车辆遇到的拥挤排队等不利于生产进行的外界因素,也就是说整个装配车间正常运行。
- Flink SQL 优化实战 - 维表 JOIN 优化
腾讯云大数据
大数据数据库flinksql
作者:龙逸尘,腾讯CSIG高级工程师背景介绍维表(DimensionTable)是来自数仓建模的概念。在数仓模型中,事实表(FactTable)是指存储有事实记录的表,如系统日志、销售记录等,而维表是与事实表相对应的一种表,它保存了事实表中指定属性的相关详细信息,可以跟事实表做关联;相当于将事实表上经常重复出现的属性抽取、规范出来用一张表进行管理。在实际生产中,我们经常会有这样的需求,以原始数据流
- Ollama容器+打造DeepSeek-R1-7B大模型
码哝小鱼
AI大模型docker运维语言模型
1、获取Ollama官方镜像1.1在线拉取镜像#dokcerpullollama/ollama:0.5.71.2导入离线镜像#tar-zxfollama0.5.7_x86.tar.gz#dokcerload-iollama0.5.7.tar2、执行以下命令创建与启动ollama#dockerrun-dp8880:11434--nameollama\-eOLLAMA_HOST=0.0.0.0:114
- DeepSeek R1 与 OpenAI O1:机器学习模型的巅峰对决
学无止尽5
机器学习人工智能
我的个人主页我的专栏:人工智能领域、java-数据结构、Javase、C语言,希望能帮助到大家!!!点赞收藏❤一、引言在机器学习的广袤天地中,大型语言模型(LLM)无疑是最为璀璨的明珠。它们凭借卓越的语言理解与生成能力,正以前所未有的方式重塑着我们与信息交互的模式。DeepSeekR1和OpenAIO1作为其中的佼佼者,代表了当前技术的前沿水准,在架构设计、训练方法、性能表现以及应用场景等诸多层面
- qt UI架构之MVD
yaofei2006
ui架构
在Qt中,MVD(Model-View-Delegate)是一种用于分离数据、显示和用户交互的设计架构。它是MVC(Model-View-Controller)的变体,特别适合用于处理复杂的数据显示和编辑场景(如表格、列表、树形结构等)。1.MVD架构的核心组件MVD架构由以下三个核心组件组成:1.1Model(模型)负责管理数据。提供数据的访问接口(如data()和setData())。通知视图
- 06 Django-orm-多表操作
lzplum619
DjangoLinux相关djangopython
一创建模型实例:我们来假定下面这些概念,字段和关系作者模型:一个作者有姓名和年龄。作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息。作者详情模型和作者模型之间是一对一的关系(one-to-one)出版商模型:出版商有名称,所在城市以及email。书籍模型:书籍有书名和出版日期,一本书可能会有多个作者,一个作者也可以写多本书,所以作者和书籍的关系就是多对多的关联关系(many-
- DeepSeek与ChatGPT的全面对比
测试者家园
人工智能ChatGPTDeepSeekChatGPTDeepSeek人工智能质量效能
在人工智能(AI)领域,生成式预训练模型(GPT)已成为推动技术革新的核心力量。OpenAI的ChatGPT自发布以来,凭借其卓越的自然语言处理能力,迅速占据市场主导地位。然而,近期中国AI初创公司DeepSeek推出的R1模型,以其高效性和低成本,迅速引起全球关注。本文将深入探讨DeepSeek与ChatGPT的技术差异、性能表现以及各自的应用前景,旨在为读者提供全新的视角和启发。一、技术架构与
- 【kafka系列】生产者
漫步者TZ
kafkakafka数据库大数据
目录发送流程1.流程逻辑分析阶段一:主线程处理阶段二:Sender线程异步发送核心设计思想2.流程关键点总结重要参数一、核心必填参数二、可靠性相关参数三、性能优化参数四、高级配置五、安全性配置(可选)六、错误处理与监控典型配置示例关键注意事项发送流程序列化与分区:消息通过Partitioner选择目标分区(默认轮询或哈希),序列化后加入RecordAccumulator缓冲区。批次合并:Sende
- 【kafka系列】broker
漫步者TZ
kafka数据库分布式kafka
目录Broker接收生产者消息和返回消息给消费者的流程逻辑分析Broker处理生产者消息的核心流程Broker处理消费者消息的核心流程关键点总结Broker接收生产者消息和返回消息给消费者的流程逻辑分析Broker处理生产者消息的核心流程接收请求Broker的SocketServer接收来自生产者的ProduceRequest(基于Reactor网络模型)。请求解析与验证解析请求头(Topic、P
- Python自学攻略:AI时代的高效学习法 —— 如何用大模型快速上手编程
优化小秦
人工智能
在AI技术爆发的今天,学习Python已不再是传统的“看书+敲代码”模式。借助大语言模型(如Deepseek、GPT、Claude、Kimi、豆包等),学习效率可以提升数倍。本文将结合实操路径、工具链和避坑指南,为你提供一套AI时代的Python速成方案。一、为什么AI能让Python学习效率飙升?实时纠错与解释传统学习:遇到报错需反复查资料,耗时且挫败感强AI辅助:直接将错误信息丢给大模型,1秒
- 【大模型】阿里云百炼平台对接DeepSeek-R1大模型使用详解
小码农叔叔
AI大模型实战与应用DeepSeek-R1使用阿里云对接DeepSeek百炼平台使用DeepSeekDeepSeek使用详解DeepSeek-R1使用详解DeepSeek-R1
目录一、前言二、DeepSeek简介2.1DeepSeek是什么2.2DeepSeekR1特点2.2.1DeepSeek-R1创新点2.3DeepSeekR1应用场景2.4与其他大模型对比三、阿里云百炼大平台介绍3.1阿里云百炼大平台是什么3.2阿里云百炼平台主要功能3.2.1应用场景3.3为什么选择阿里云百炼平台四、前置准备4.1注册百炼平台账户4.2获取apikey4.3本地安装python环
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。