- AI人工智能领域:Bard的崛起之路
AIGC应用创新大全
人工智能bardai
AI人工智能领域:Bard的崛起之路关键词:Bard、GoogleAI、大语言模型、对话式AI、自然语言处理、生成式AI、AI竞争摘要:本文深入探讨GoogleBard的发展历程、技术架构及其在AI领域的地位。我们将从Bard的诞生背景开始,分析其核心技术原理,比较与其他大语言模型的异同,并通过实际案例展示其应用场景。最后展望Bard的未来发展方向及面临的挑战。背景介绍目的和范围本文旨在全面解析G
- 从零开始理解Transformer模型:架构与应用
淮橘√
transformer深度学习人工智能
引言近年来,Transformer模型席卷了自然语言处理(NLP)领域,成为了深度学习中的明星架构。从Google提出的《AttentionisAllYouNeed》论文到ChatGPT、BERT等模型的广泛应用,Transformer以其强大的性能和灵活性改变了我们对序列建模的认知。本文将从零开始,深入浅出地解析Transformer的架构原理、核心组件以及实际应用场景,并提供一个简单的代码示例
- 揭秘自然语言处理在AI人工智能领域的奥秘
AI智能探索者
AIAgent智能体开发实战人工智能自然语言处理easyuiai
揭秘自然语言处理在AI人工智能领域的奥秘关键词:自然语言处理、AI人工智能、语言理解、语言生成、语义分析摘要:本文深入探讨了自然语言处理(NLP)在AI人工智能领域的奥秘。首先介绍了自然语言处理的背景,包括目的、预期读者、文档结构和相关术语。接着阐述了自然语言处理的核心概念与联系,通过文本示意图和Mermaid流程图进行展示。详细讲解了核心算法原理和具体操作步骤,并用Python源代码进行阐述。分
- 【LangChain编程:从入门到实践】AI 大模型检索增强生成 RAG 实践
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LangChain编程:从入门到实践-AI大模型检索增强生成RAG实践关键词:LangChain,RAG,大语言模型,检索增强生成,向量数据库,嵌入模型,提示工程1.背景介绍在人工智能和自然语言处理领域,大语言模型(LargeLanguageModels,LLMs)的出现无疑是一个重大突破。像GPT-3、GPT-4这样的模型展现出了惊人的语言理解和生成能力,为各种应用场景带来了无限可能。然而,这些
- 【机器学习&深度学习】模型微调的基本概念与流程
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、什么是模型微调(Fine-tuning)?二、预训练vs微调:什么关系?三、微调的基本流程(以BERT为例)1️⃣准备数据2️⃣加载预训练模型和分词器3️⃣数据编码与加载4️⃣定义优化器5️⃣开始训练6️⃣评估与保存模型四、是否要冻结BERT层?五、完整训练示例代码5.1环境依赖5.2执行代码总结:微调的优势前言在自然语言处理(NLP)快速发展的今天,预训练模型如BERT成为了众多任务
- 【自然语言处理-NLP】文本预处理技术
云博士的AI课堂
哈佛博后带你玩转机器学习深度学习自然语言处理人工智能NLP深度学习数据预处理NLP数据预处理机器学习
以下内容将从基本概念到实用代码分步骤、分场景地详细介绍NLP常见文本预处理方法及其背后的思想。如果无法从外部导入数据,我们会模拟一份简易文本数据(如字符串列表),并在此基础上演示预处理代码及详细解释,确保在常规Python环境下可以运行。一、文本预处理的常见需求和作用在自然语言处理(NLP)任务(如机器学习、深度学习、大模型开发)中,原始文本数据通常会包含各种噪声,例如:多余的空格、换行符、特殊符
- 从零开始:Python实现语音识别的完整教程_副本
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络python语音识别开发语言ai
从零开始:Python实现语音识别的完整教程关键词:Python、语音识别、语音转文本、音频处理、机器学习、深度学习、自然语言处理摘要:本文将带你从零开始学习如何使用Python实现语音识别功能。我们将从基础概念讲起,逐步深入到实际代码实现,涵盖音频处理、特征提取、模型训练等关键环节,最终构建一个完整的语音识别系统。无论你是初学者还是有一定经验的开发者,都能从本教程中获得实用的知识和技能。背景介绍
- 面向大语言模型幻觉的关键数据集:系统性综述与分类法
致Great
语言模型人工智能自然语言处理
面向大语言模型幻觉的关键数据集:系统性综述与分类法摘要大语言模型(LargeLanguageModels,LLMs)在自然语言处理的多个领域取得了革命性进展,但其固有的“幻觉”问题——即生成看似合理但与事实不符或与上下文无关的内容——严重制约了其在关键应用中的可靠性与安全性。为了系统性地评估、理解并缓解LLM的幻觉现象,学术界和工业界开发了大量多样化的数据集与基准。本文对大模型幻觉领域的关键数据集
- 信息抽取数据集全景分析:分类体系、技术演进与挑战_DEEPSEEK
致Great
分类数据挖掘人工智能
信息抽取数据集全景分析:分类体系、技术演进与挑战摘要信息抽取(IE)作为自然语言处理的核心任务,是构建知识图谱、支持智能问答等应用的基础。近年来,随着深度学习技术的发展和大规模预训练模型的兴起,IE数据集呈现爆发式增长,其分析与评估对模型研发和领域迁移至关重要。本文基于对158个主流IE数据集的系统性梳理,首次提出“信息提取与命名实体识别数据集分类体系”。该体系涵盖8大类别(命名实体识别、关系提取
- 自然语言处理之文本生成:Recurrent Neural Networks (RNN):序列模型与语言模型
zhubeibei168
自然语言处理自然语言处理rnn语言模型人工智能机器翻译生成对抗网络
自然语言处理之文本生成:RecurrentNeuralNetworks(RNN):序列模型与语言模型自然语言处理简介NLP的基本概念自然语言处理(NaturalLanguageProcessing,简称NLP)是人工智能领域的一个重要分支
- 推荐几本人工智能方面的书(入门级)
人邮异步社区
人工智能深度学习神经网络
以下推荐几本适合入门人工智能的书籍,帮助你逐步建立基础知识和理解:一、数学基础类《数学之美》推荐理由:深入浅出地讲解了自然语言处理与搜索方向的数学原理,对于理解算法背后的数学逻辑非常有帮助。本书的章节名称,有“统计语言模型”“谈谈中文分词”“贾里尼克和现代语言处理”“布尔代数和搜索引擎”“信息指纹及其应用”等,似乎太过专业,实际上高中和大学低年级的同学们都能看得懂,当然本书因此也可以称得上是“高级
- 自然语言处理(NLP)中的文本生成控制技术
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据自然语言处理easyui人工智能ai
自然语言处理(NLP)中的文本生成控制技术关键词:文本生成、可控生成、语言模型、Prompt工程、解码策略、条件控制、评估指标摘要:本文深入探讨自然语言处理中文本生成控制技术的最新进展。我们将从基础概念出发,系统分析各种控制方法的原理和实现,包括Prompt设计、解码策略优化、条件控制机制等核心内容。文章将结合数学模型、算法实现和实际案例,全面展示如何实现高质量、可控的文本生成,并探讨该领域面临的
- Python爬虫实战:研究difflib库相关技术
ylfhpy
爬虫项目实战python爬虫easyui开发语言前端difflib
1.引言1.1研究背景与意义在信息爆炸的数字时代,互联网每天产生海量文本内容。据统计,全球新闻网站日均发布文章超过300万篇,社交媒体平台产生的文本信息量更以亿级单位增长。这种信息过载带来了内容同质化、抄袭剽窃等问题,给新闻媒体行业、学术研究领域和搜索引擎优化等带来了挑战。文本相似度分析作为自然语言处理的重要分支,能够有效识别内容间的相似程度,具有重要的应用价值:新闻媒体行业:通过检测新闻抄袭和重
- DeepSeek:AI驱动的效率革命与实战案例解
weixin_45788582
人工智能aiDeepSeek
在人工智能技术的浪潮中,DeepSeek作为一款专注实现AGI(通用人工智能)的先锋工具,正通过其强大的自然语言处理(NLP)与分布式计算能力,重新定义高效办公的边界。以下通过技术解析与实战案例,展现DeepSeek如何赋能个人与企业,开启职场效率革命。一、技术革新:DeepSeek的核心竞争力深度学习赋能DeepSeek的技术架构基于BERT、Transformer等先进深度学习模型,通过构建复
- AI 技术&AI开发框架
34号树洞
人工智能深度学习人工智能机器学习NLPGAI
目录一、AI技术及其开发框架1.AI技术分类与代表方向2.主流AI开发框架3.AI应用开发流程简述4.补充:基础依赖与生态二、AI技术方向1.机器学习(MachineLearning,ML)✦核心概念:✦关键方法:✦应用案例:2.深度学习(DeepLearning,DL)✦核心概念:✦网络结构举例:✦技术趋势:3.自然语言处理(NLP)✦核心任务:✦代表模型:4.计算机视觉(ComputerVis
- Java AI 新纪元:Spring AI 与 Spring AI Alibaba 的崛起
小沛9
SpringAIAlibabaSpringAIjava人工智能springspringaiSAA
此章节没什么营养,只是一个描述,同时也能看到AI的能力(文章基本都是AI进行生成的),小沛觉得开始不写点引言好像差了点什么东西,好像鱼离开了自行车。引言:AI时代对Java开发者的机遇与挑战,Java在AI领域的现状在当今技术飞速发展的时代,人工智能(AI)已不再是遥不可及的未来概念,而是深刻地融入到我们生活的方方面面,从智能推荐系统到自动驾驶,从自然语言处理到计算机视觉,AI正以前所未有的速度改
- 大模型本地部署,拥有属于自己的ChatGpt
小妖同学学AI
chatgpt
ChatGpt以其强大的信息整合和对话能力惊艳了全球,在自然语言处理上面表现出了惊人的能力。不管用于文案撰写还是程序辅助开发都大大提高了我们的工作效率,但是其使用有一定的门槛,让我们大多数人都望而却步,今天我们利用ollama实现本地大模型的步骤,让我们轻松拥有自己的人工智能。Ollama作为一个轻量级的工具,可以帮助用户在本地运行这些大型语言模型,无需持续依赖云服务,既保护了数据隐私,又能减少网
- Spring AI 结合 MCP MySQL 实现对话式数据库查询
没刮胡子
软件开发技术实战专栏人工智能AISpring数据库spring人工智能spring-aimcp-servermysql
在现代应用开发中,将人工智能与数据库查询结合可以创造更自然、更智能的用户交互方式。下面我将详细介绍如何使用SpringAI框架结合MCP(可能指MySQL连接池或相关组件)实现对话中的数据库查询功能。什么是SpringAI和MCPMySQLSpringAI框架概述SpringAI是基于Spring生态的人工智能集成框架,它提供了:与大型语言模型(LLM)的集成能力对话管理和自然语言处理功能业务逻辑
- 信息抽取领域关键Benchmark方法:分类体系
信息抽取领域关键Benchmark方法:分类体系摘要信息抽取(InformationExtraction,IE)作为自然语言处理的核心任务之一,旨在从非结构化文本中识别并结构化关键信息(如实体、关系、事件等),广泛应用于知识图谱构建、智能问答和数据分析等领域。近年来,随着深度学习技术的快速发展,信息抽取方法在性能和应用范围上取得了显著进步,但同时也面临着任务多样性、跨领域泛化性以及低资源场景下的适
- TensorFlow:开启智能时代的引擎
科技林总
DeepSeek学AI人工智能
想象一下,计算机能看懂病历、汽车能自动驾驶、机器能创作艺术——这一切的核心,正是深度学习的力量。而推动这场革命的引擎之一,就是今天的主角:**TensorFlow**。---###**一、背景:为什么需要TensorFlow?1.**深度学习的爆发**-传统编程无法解决图像识别、自然语言处理等复杂问题。-神经网络需要高效工具处理海量数据和计算。2.**Google的答案**-2015年开源Tens
- 浅谈卷积神经网络(CNN)
cyc&阿灿
cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetworks,CNN)作为深度学习领域最具影响力的架构之一,已在计算机视觉、自然语言处理、医学影像分析等领域取得了革命性突破。本文将系统全面地剖析CNN的核心原理、关键组件、经典模型、数学基础、训练技巧以及最新进展,通过理论解析与代码实践相结合的方式,帮助读者深入掌握这一重要技术。一、CNN基础与核心思想1.1传统神经网络的局限性在处理图像等
- 卷积神经网络
亿只小灿灿
Python算法与数据结构人工智能cnn人工智能神经网络
一、引言在当今人工智能的浪潮中,卷积神经网络(ConvolutionalNeuralNetwork,CNN)无疑是一颗璀璨的明星。它在图像识别、语音处理、自然语言处理等众多领域取得了巨大的成功,极大地推动了人工智能技术的发展。那么,什么是卷积神经网络?它的算法原理是什么?本文将深入探讨这些问题,并通过Python代码实现一个简单的卷积神经网络,以帮助读者更好地理解和掌握这一强大的技术。二、卷积神经
- 理解不同层的表示(layer representations)
科学禅道
高维表示人工智能深度学习
在机器学习和深度学习领域,特别是在处理音频和自然语言处理(NLP)任务时,"层的表示"(layerrepresentations)通常是指神经网络不同层在处理输入数据时生成的特征或嵌入。这些表示捕获了输入数据的不同层次的信息。1.层的表示(layerrepresentations)为了更好地理解这一概念,我们可以从以下几个方面进行解释:1.深度神经网络结构深度神经网络(DNN)通常由多个层组成,每
- 微软人工智能证书AI-102 | 如何快速通过?
全球认证考试中心
人工智能微软
微软AI-102考试,全称“DesigningandImplementingaMicrosoftAzureAISolution”,是微软推出的用于验证考生在Azure平台上设计和实施AI解决方案核心能力的认证考试。以下是具体介绍:考试描述:考试主要衡量考生实施计划和管理Azure认知服务解决方案、计算机视觉解决方案、自然语言处理解决方案、知识挖掘解决方案、对话式AI解决方案的能力。考试题型通常包括
- embedding模型有哪些?如何选择合适的embedding模型?
行云流水AI笔记
embedding
embedding模型是一种将数据映射到低维空间的模型,常用于自然语言处理、推荐系统、图像识别等领域。以下是一些常见的embedding模型:Word2Vec:CBOW(ContinuousBag-of-Words):通过上下文预测中心词。Skip-Gram:通过中心词预测上下文。GloVe(GlobalVectorsforWordRepresentation):结合了词频统计和Word2Vec的
- Transformer底层原理解析及基于pytorch的代码实现
LiRuiJie
人工智能transformerpytorch深度学习
1.Transformer底层原理解析1.1核心架构突破Transformer是自然语言处理领域的革命性架构,其核心设计思想完全摒弃了循环结构,通过自注意力机制实现全局依赖建模。整体架构图如下:以下是其核心组件:1)自注意力机制(Self-Attention)-输入序列的每个位置都能直接关注所有位置-数学公式(缩放点积注意力):-Q:查询矩阵(当前关注点)-K:键矩阵(被比较项)-V:值矩阵(实际
- Python爬虫实战:研究TextBlob相关技术
ylfhpy
爬虫项目实战python爬虫开发语言htmlTextBlob
1.引言1.1研究背景与意义随着互联网技术的飞速发展,社交媒体已成为人们获取信息和表达观点的重要平台。每天在社交媒体上产生的海量文本数据蕴含着丰富的情感信息和社会舆情,分析这些文本情感倾向,有助于企业了解消费者对产品和服务的评价,政府部门监测社会舆论动态,研究机构探索公众对热点事件的态度。情感分析(SentimentAnalysis)作为自然语言处理的重要分支,旨在通过计算方法识别和提取文本中的主
- 对话云蝠智能:大模型如何让企业呼叫系统从 “成本中心” 变身 “价值枢纽”?
MARS_AI_
人工智能自然语言处理信息与通信交互
在人工智能重塑企业服务的浪潮中,云蝠智能(南京星蝠科技有限公司旗下品牌)以深厚的技术积累和行业实践,逐步成长为国内智能外呼领域的标杆企业。其发展路径揭示了技术自主创新与场景深度结合的必然性。一、技术架构:全栈自研奠定领先基础云蝠智能的核心竞争力源于其全链路自研技术体系。该架构覆盖语音识别(ASR)、自然语言处理(NLP)、语音合成(TTS)及软交换六大层级,实现从基础设施到操作层的闭环设计。这一分
- 入选 ICML 2025!哈佛医学院等推出全球首个 HIE 领域临床思维图谱模型,神经认知结果预测任务上性能提升 15%
hyperai
在人工智能技术突飞猛进的当下,大型视觉-语言模型(LVLMs)正以惊人的速度重塑多个领域的认知边界。在自然图像与视频分析领域,这类模型依托先进的神经网络架构、海量标注数据集与强大算力支持,已能精准完成物体识别、场景解析等高阶任务。而在自然语言处理领域,LVLMs通过对TB级文本语料的学习,在机器翻译、文本摘要、情感分析等任务上达到专业级水准,其生成的学术摘要甚至能精准提炼医学文献的核心结论。然而当
- 合规视角下银行智能客服风险防控
AI 智能服务
智能客服人工智能AIGC数据库chatgpt
1.AI驱动金融变革的政策与技术背景政策导向:我国《新一代人工智能发展规划》明确提出发展智能金融,要求:构建金融大数据平台,提升多媒体数据处理能力;创新智能金融产品与服务形态;推广智能客服、监控等技术应用;建立智能风控预警体系。技术支撑:云计算、大数据技术成熟为AI发展奠定了基础。深度学习算法的突破则引爆了本轮AI浪潮,显著提升了复杂任务处理精度,进而推动了计算机视觉、机器学习、自然语言处理(NL
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST