tensorflow 加载数据集

tf.data.Dataset.from_tensor_slices:

使用tf.data.Dataset.from_tensor_slices五步加载数据集


import tensorflow as tf
from tensorflow import keras

def load_dataset():
	# Step0 准备数据集, 可以是自己动手丰衣足食, 也可以从 tf.keras.datasets 加载需要的数据集(获取到的是numpy数据) 
	# 这里以 mnist 为例
	(x, y), (x_test, y_test) = keras.datasets.mnist.load_data()
	
	# Step1 使用 tf.data.Dataset.from_tensor_slices 进行加载
	db_train = tf.data.Dataset.from_tensor_slices((x, y))
	db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
	
	# Step2 打乱数据
	db_train.shuffle(1000)
	db_test.shuffle(1000)
	
	# Step3 预处理 (预处理函数在下面)
	db_train.map(preprocess)
	db_test.map(preprocess)

	# Step4 设置 batch size 一次喂入64个数据
	db_train.batch(64)
	db_test.batch(64)

	# Step5 设置迭代次数(迭代2次) test数据集不需要emmm
	db_train.repeat(2)

	return db_train, db_test

def preprocess(labels, images):
	'''
	最简单的预处理函数:
		转numpy为Tensor、分类问题需要处理label为one_hot编码、处理训练数据
	'''
	# 把numpy数据转为Tensor
	labels = tf.cast(labels, dtype=tf.int32)
	# labels 转为one_hot编码
	labels = tf.one_hot(labels, depth=10)
	# 顺手归一化
	images = tf.cast(images, dtype=tf.float32) / 255
	return labels, images



你可能感兴趣的:(机器学习)