动手学习深度学习(总结梳理)——16. 含并行连结的网络(GoogLeNet)

目录

 1. Inception块

2. GoogLeNet模型

3. 训练模型

 4. QA

4.1 3x3和5x5的卷积也可以降低通道数,为什么这里要用1x1去做?

4.2 里面很多层数都是2的n次方,是为什么?

4.3 正常自己去调用模型是调用经典模型,还是自己根据经典模型的搭建思维去搭建?

4.4 3x3 改成一个1x3和一个3x1的好处是什么?


动手学习深度学习(总结梳理)——16. 含并行连结的网络(GoogLeNet)_第1张图片

 1. Inception块

动手学习深度学习(总结梳理)——16. 含并行连结的网络(GoogLeNet)_第2张图片

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


class Inception(nn.Module):
    ''' c1--c4是每条路径的输出通道数 '''
    def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
        super(Inception, self).__init__(**kwargs)
        ''' 线路1,单1x1卷积层 '''
        self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
        ''' 线路2,1x1卷积层后接3x3卷积层 '''
        self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        ''' 线路3,1x1卷积层后接5x5卷积层 '''
        self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        ''' 线路4,3x3最大汇聚层后接1x1卷积层 '''
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)

    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        ''' 在通道维度上连结输出 '''
        return torch.cat((p1, p2, p3, p4), dim=1)

那么为什么GoogLeNet这个网络如此有效呢? 首先我们考虑一下滤波器(filter)的组合,它们可以用各种滤波器尺寸探索图像,这意味着不同大小的滤波器可以有效地识别不同范围的图像细节。 同时,我们可以为不同的滤波器分配不同数量的参数。

2. GoogLeNet模型

动手学习深度学习(总结梳理)——16. 含并行连结的网络(GoogLeNet)_第3张图片

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第二个模块使用两个卷积层:第一个卷积层是64个通道、1×1卷积层;第二个卷积层使用将通道数量增加三倍的3×3卷积层。 这对应于Inception块中的第二条路径。

b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.ReLU(),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第三个模块串联两个完整的Inception块。 第一个Inception块的输出通道数为64+128+32+32=256,四个路径之间的输出通道数量比为64:128:32:32=2:4:1:1。 第二个和第三个路径首先将输入通道的数量分别减少到96/192=1/2和16/192=1/12,然后连接第二个卷积层。第二个Inception块的输出通道数增加到128+192+96+64=480,四个路径之间的输出通道数量比为128:192:96:64=4:6:3:2。 第二条和第三条路径首先将输入通道的数量分别减少到128/256=1/2和32/256=1/8。

b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第四模块更加复杂, 它串联了5个Inception块,其输出通道数分别是192+208+48+64=512、160+224+64+64=512、128+256+64+64=512、112+288+64+64=528和256+320+128+128=832。 这些路径的通道数分配和第三模块中的类似,首先是含3×3卷积层的第二条路径输出最多通道,其次是仅含1×1卷积层的第一条路径,之后是含5×5卷积层的第三条路径和含3×3最大汇聚层的第四条路径。 其中第二、第三条路径都会先按比例减小通道数。 这些比例在各个Inception块中都略有不同。

b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第五模块包含输出通道数为256+320+128+128=832和384+384+128+128=1024的两个Inception块。 其中每条路径通道数的分配思路和第三、第四模块中的一致,只是在具体数值上有所不同。 需要注意的是,第五模块的后面紧跟输出层,该模块同NiN一样使用全局平均汇聚层,将每个通道的高和宽变成1。 最后我们将输出变成二维数组,再接上一个输出个数为标签类别数的全连接层。

b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   nn.AdaptiveAvgPool2d((1,1)),
                   nn.Flatten())

net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))

GoogLeNet模型的计算复杂,而且不如VGG那样便于修改通道数。 为了使Fashion-MNIST上的训练短小精悍,我们将输入的高和宽从224降到96,这简化了计算。下面演示各个模块输出的形状变化。

X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)        '''

Sequential output shape:     torch.Size([1, 64, 24, 24])
Sequential output shape:     torch.Size([1, 192, 12, 12])
Sequential output shape:     torch.Size([1, 480, 6, 6])
Sequential output shape:     torch.Size([1, 832, 3, 3])
Sequential output shape:     torch.Size([1, 1024])
Linear output shape:         torch.Size([1, 10])                        '''

3. 训练模型

和以前一样,我们使用Fashion-MNIST数据集来训练我们的模型。在训练之前,我们将图片转换为96×96分辨率。

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

动手学习深度学习(总结梳理)——16. 含并行连结的网络(GoogLeNet)_第4张图片 

 4. QA

4.1 3x3和5x5的卷积也可以降低通道数,为什么这里要用1x1去做?

1x1的参数少,计算量缩减了几十倍,如果采用大的卷积核,会让我们模型后续计算量太大。

4.2 里面很多层数都是2的n次方,是为什么?

选2的n次方是为了算的快一点,gpu并行计算算的方便,而且人也方便去计算通道。

4.3 正常自己去调用模型是调用经典模型,还是自己根据经典模型的搭建思维去搭建?

正常建议直接调用,除非你数据特别不一样,除非你特别懂,要不然自己搭可能会出很多问题。可能像vgg去改通道数,或者是输入输出拉宽什么的。

4.4 3x3 改成一个1x3和一个3x1的好处是什么?

可以降低三分之一的运算量。坏处是效果可能没那么好

你可能感兴趣的:(学习)