Python数据结构:哈希表

Python数据结构:哈希表_第1张图片

哈希

散列(哈希)是电脑科学中一种对资料的处理方法,通过某种特定的函数/算法(称为散列函数/算法)将要检索的项与用来检索的索引(称为散列,或者散列值)关联起来,生成一种便于搜索的数据结构(称为散列表)。

哈希表是什么

哈希表(散列表)是根据键(Key)直接访问内存存储位置的数据结构。根据键(Key)值将数据映射到内存中一个位置的函数称为哈希函数,根据哈希函数建立的记录数据的表称为哈希表。

哈希表的特点

  • 若关键字为 ,则其值存放在的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系  为散列函数,按这个思想建立的表为散列表。

  • 对不同的关键字可能得到同一散列地址,即 ,而 ,这种现象称为冲突。

  • 若对于关键字集合中的任一个关键字,经散列函数映象到地址集合中任何一个地址的概率是相等的,则称此类散列函数为均匀散列函数(Uniform Hash function),这就是使关键字经过散列函数得到一个“随机的地址”,从而减少冲突。

处理冲突

开放定址法

开放定址法就是产生冲突之后去寻找下一个空闲的空间。函数定义为:

其中,hash(key) 是哈希函数, 是增量序列, 为已冲突的次数。

  • 线性探测法:,或者其他线性函数。相当于逐个探测存放地址的表,直到查找到一个空单元,然后放置在该单元。

  • 平方探测法:

链表法

这是另外一种类型解决冲突的办法,散列到同一位置的元素,不是继续往下探测,而是在这个位置是一个链表,这些元素则都放到这一个链表上。

再散列

如果一次不够,就再来一次,直到冲突不再发生。

建立公共溢出区

将哈希表分为基本表和溢出表两部分,凡是和基本表发生冲突的元素,一律填入溢出表(注意:在这个方法里面是把元素分开两个表来存储)。

哈希表的应用

  • 查字典

  • 网络防火墙中,根据源IP,目的IP,源端口,目的端口,协议号构成的五元组来标识一条网络数据流的,并且根据五元组来建立会话表项(session entry)。为了查找便捷,一般都使用Hash表来实现这个会话表,以提高转发的效率。

  • Linux 内核大量采用哈希表

下面用开放地址法(线性探测)实现了一个简单的哈希表。仔细阅读后试试哈希表的各种操作,感受以下哈希表飞一般的速度吧!

代码段 1

class Hash:
    # 表的长度定位11
    def __init__(self):
        self.hash_table=[[None,None]for i in range(11)]
    
    # 散列函数
    def hash(self,k,i):
        h_value=(k+i)%11
        if self.hash_table[h_value][0]==k:
            return h_value
        if self.hash_table[h_value][0]!=None:
            i+=1
            h_value=self.hash(k,i)
        return h_value
    
    def put(self,k,v):
        hash_v=self.hash(k,0)
        self.hash_table[hash_v][0]=k
        self.hash_table[hash_v][1]=v

    def get(self,k):
        hash_v=self.hash(k,0)
        return self.hash_table[hash_v][1]

hash = Hash()
hash.put(1 ,'wang')
print(hash.get(1))

上述代码实现了一个简单的哈希表,但表的长度只有11,填入表中元素越来越多后,产生冲突的可能性会越来越大。

由此引出另一个概念,叫做载荷因子(load factor)。载荷因子的定义为:

所以当达到一定程度后,表的长度要变的,载荷因子被设计为0.75;超过0.8,cpu 的cache missing 会急剧上升。即需要新定义一个 resize 函数扩大表的长度,一般选择扩到已插入元素数量的两倍。

在上述代码中重新升级我们的 Hash 吧!示例代码代码段2中。

代码段 2

class Map:
    def __init__(self):
        self.capacity=11
        self.hash_table=[[None,None]for i in range(self.capacity)]
        self.num=0
        self.load_factor=0.75
    
    def hash(self,k,i):
        h_value=(k+i)%self.capacity
        if self.hash_table[h_value][0]==k:
            return h_value
        if self.hash_table[h_value][0]!=None:
            i+=1
            h_value=self.hash(k,i)
        return h_value

    def resize(self):
         #扩容到原有元素数量的两倍
        self.capacity=self.num*2
        temp=self.hash_table[:]
        self.hash_table=[[None,None]for i in range(self.capacity)] 
        for i in temp:
             #把原来已有的元素存入
            if(i[0]!=None):
                hash_v=self.hash(i[0],0)
                self.hash_table[hash_v][0]=i[0]
                self.hash_table[hash_v][1]=i[1]
 
    def put(self,k,v):
        hash_v=self.hash(k,0)
        self.hash_table[hash_v][0]=k
        self.hash_table[hash_v][1]=v
        #暂不考虑key重复的情况,具体自己可以优化
        self.num+=1
        # 如果比例大于载荷因子
        if(self.num/len(self.hash_table)>self.load_factor):
            self.resize()

    def get(self,k):
        hash_v=self.hash(k,0)
        return self.hash_table[hash_v][1]

经典实践

Python 中的字典就是用哈希表来实现的,它的特点如下:

  • 字典的每个键值 key=>value 对用冒号 : 分割,每个键值对之间用逗号 , 分割,整个字典包括在花括号 {} 中 ,格式:dict = {key1 : value1, key2 : value2 }

  • 通过中括号访问,添加,更新元素

dictionary = {'name': 'wang', 'age': 17, 'class': 'first'}
dictionary['age'] = 18
dictionary['country'] = 'china'
print(dictionary['age'])
print(dictionary['country'])

根据 Python 中的字典特性,自己手动实现一个 Python 字典吧

class MyDictionary(object):
    # 字典类的初始化
    def __init__(self):
        self.table_size = 13 # 哈希表的大小
        self.key_list = [None]*self.table_size #用以存储key的列表
        self.value_list = [None]*self.table_size #用以存储value的列表
    
    # 散列函数,返回散列值
    # key为需要计算的key
    def hashfuction(self, key):
        count_char = 0
        key_string = str(key)
        for key_char in key_string: # 计算key所有字符的ASCII值的和
            count_char += ord(key_char) # ord()函数用于求ASCII值
        length = len(str(count_char))
        if length > 3 : # 当和的位数大于3时,使用平方取中法,保留中间3位
            mid_int = 100*int((str(count_char)[length//2-1])) \
                    + 10*int((str(count_char)[length//2])) \
                    + 1*int((str(count_char)[length//2+1]))
        else: # 当和的位数小于等于3时,全部保留
            mid_int = count_char
            
        return mid_int%self.table_size # 取余数作为散列值返回
        
    # 重新散列函数,返回新的散列值
    # hash_value为旧的散列值
    def rehash(self, hash_value):
        return (hash_value+3)%self.table_size #向前间隔为3的线性探测
        
    # 存放键值对
    def __setitem__(self, key, value):
        hash_value = self.hashfuction(key) #计算哈希值
        if None == self.key_list[hash_value]: #哈希值处为空位,则可以放置键值对
            pass
        elif key == self.key_list[hash_value]: #哈希值处不为空,旧键值对与新键值对的key值相同,则作为更新,可以放置键值对
            pass
        else: #哈希值处不为空,key值也不同,即发生了“冲突”,则利用重新散列函数继续探测,直到找到空位
            hash_value = self.rehash(hash_value) # 重新散列
            while (None != self.key_list[hash_value]) and (key != self.key_list[hash_value]): #依然不能插入键值对,重新散列
                hash_value = self.rehash(hash_value) # 重新散列
        #放置键值对      
        self.key_list[hash_value] = key
        self.value_list[hash_value] = value

    # 根据key取得value
    def __getitem__(self, key):
        hash_value = self.hashfuction(key) #计算哈希值
        first_hash = hash_value #记录最初的哈希值,作为重新散列探测的停止条件
        if None == self.key_list[hash_value]: #哈希值处为空位,则不存在该键值对
            return None
        elif key == self.key_list[hash_value]: #哈希值处不为空,key值与寻找中的key值相同,则返回相应的value值
            return self.value_list[hash_value]
        else: #哈希值处不为空,key值也不同,即发生了“冲突”,则利用重新散列函数继续探测,直到找到空位或相同的key值
            hash_value = self.rehash(hash_value) # 重新散列
            while (None != self.key_list[hash_value]) and (key != self.key_list[hash_value]): #依然没有找到,重新散列
                hash_value = self.rehash(hash_value) # 重新散列
                if hash_value == first_hash: #哈希值探测重回起点,判断为无法找到了
                    return None
            #结束了while循环,意味着找到了空位或相同的key值
            if None == self.key_list[hash_value]: #哈希值处为空位,则不存在该键值对
                return None
            else: #哈希值处不为空,key值与寻找中的key值相同,则返回相应的value值
                return self.value_list[hash_value]
    
    # 删除键值对
    def __delitem__(self, key):
        hash_value = self.hashfuction(key) #计算哈希值
        first_hash = hash_value #记录最初的哈希值,作为重新散列探测的停止条件
        if None == self.key_list[hash_value]: #哈希值处为空位,则不存在该键值对,无需删除
            return
        elif key == self.key_list[hash_value]: #哈希值处不为空,key值与寻找中的key值相同,则删除
            self.key_list[hash_value] = None
            self.value_list[hash_value] = None
            return
        else: #哈希值处不为空,key值也不同,即发生了“冲突”,则利用重新散列函数继续探测,直到找到空位或相同的key值
            hash_value = self.rehash(hash_value) # 重新散列
            while (None != self.key_list[hash_value]) and (key != self.key_list[hash_value]): #依然没有找到,重新散列
                hash_value = self.rehash(hash_value) # 重新散列
                if hash_value == first_hash: #哈希值探测重回起点,判断为无法找到了
                    return
            #结束了while循环,意味着找到了空位或相同的key值
            if None == self.key_list[hash_value]: #哈希值处为空位,则不存在该键值对
                return
            else: #哈希值处不为空,key值与寻找中的key值相同,则删除
                self.key_list[hash_value] = None
                self.value_list[hash_value] = None
                return
    
    # 返回字典的长度
    def __len__(self):
        count = 0
        for key in self.key_list:
            if key != None:
                count += 1
        return count

def main():
    H = MyDictionary()
    H["kcat"]="cat"
    H["kdog"]="dog"
    H["klion"]="lion"
    H["ktiger"]="tiger"
    H["kbird"]="bird"
    H["kcow"]="cow"
    H["kgoat"]="goat"
    H["pig"]="pig"
    H["chicken"]="chicken"
    print("字典的长度为%d"%len(H))
    print("键 %s 的值为为 %s"%("kcow",H["kcow"]))
    print("字典的长度为%d"%len(H))
    print("键 %s 的值为为 %s"%("kmonkey",H["kmonkey"]))
    print("字典的长度为%d"%len(H))
    del H["klion"]
    print("字典的长度为%d"%len(H))
    print(H.key_list)
    print(H.value_list)
    
if __name__ == "__main__":
    main()

-END-

想学习更对技术技能加下方小姐姐微信,领取全套源码笔记教程

Python数据结构:哈希表_第2张图片

 

 

你可能感兴趣的:(千锋宋宋老师—Python专栏,Python,数据结构,散列表,python)