Vision Transformer | CVPR 2022 Oral - Shunted Transformer: Shunted Self-Attention

Shunted Self-Attention via Multi-Scale Token Aggregation

Vision Transformer | CVPR 2022 Oral - Shunted Transformer: Shunted Self-Attention_第1张图片

  • 论文:https://arxiv.org/abs/2111.15193
  • 代码:https://github.com/OliverRensu/Shunted-Transformer
  • 核心内容:本身可以看做是对 PVT 中对 K 和 V 下采样的操作进行多尺度化改进。对 K 和 V 分成两组,使用不同的下采样尺度,构建多尺度的头的 token 来和原始的 Q 对应的头来计算,最终结果拼接后送入输出线性层。

Vision Transformer | CVPR 2022 Oral - Shunted Transformer: Shunted Self-Attention_第2张图片

核心改进

Attention FFN
Vision Transformer | CVPR 2022 Oral - Shunted Transformer: Shunted Self-Attention_第3张图片 Vision Transformer | CVPR 2022 Oral - Shunted Transformer: Shunted Self-Attention_第4张图片
  • Patch Embedding:带重叠的跨步为 2 的 7x7 卷积+3x3 标准卷积+非重叠补偿为 2 的投影层。最终下采样四倍。
  • Attention:
    • 对 Key 和 Value 使用不同大小的跨步卷积下采样序列,得到具有不同尺度的 K 和 V 的集合。通过将 q 与各个尺度的 K 和 V 进行 Attention 计算,从而捕获多个尺度的信息。
    • 得到的 V 上引入额外的深度分离卷积实现局部增强。
  • FFN:在两层 FC 中的激活层之前,在原始特征上加上了一个额外的深度分离卷积分支,来补充局部细节信息。

核心代码

class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.act = nn.GELU()
            if sr_ratio==8:
                self.sr1 = nn.Conv2d(dim, dim, kernel_size=8, stride=8)
                self.norm1 = nn.LayerNorm(dim)
                self.sr2 = nn.Conv2d(dim, dim, kernel_size=4, stride=4)
                self.norm2 = nn.LayerNorm(dim)
            if sr_ratio==4:
                self.sr1 = nn.Conv2d(dim, dim, kernel_size=4, stride=4)
                self.norm1 = nn.LayerNorm(dim)
                self.sr2 = nn.Conv2d(dim, dim, kernel_size=2, stride=2)
                self.norm2 = nn.LayerNorm(dim)
            if sr_ratio==2:
                self.sr1 = nn.Conv2d(dim, dim, kernel_size=2, stride=2)
                self.norm1 = nn.LayerNorm(dim)
                self.sr2 = nn.Conv2d(dim, dim, kernel_size=1, stride=1)
                self.norm2 = nn.LayerNorm(dim)
            self.kv1 = nn.Linear(dim, dim, bias=qkv_bias)
            self.kv2 = nn.Linear(dim, dim, bias=qkv_bias)
            self.local_conv1 = nn.Conv2d(dim//2, dim//2, kernel_size=3, padding=1, stride=1, groups=dim//2)
            self.local_conv2 = nn.Conv2d(dim//2, dim//2, kernel_size=3, padding=1, stride=1, groups=dim//2)
        else:
            self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
            self.local_conv = nn.Conv2d(dim, dim, kernel_size=3, padding=1, stride=1, groups=dim)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x, H, W):
        B, N, C = x.shape
        q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
        if self.sr_ratio > 1:
                x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
                x_1 = self.act(self.norm1(self.sr1(x_).reshape(B, C, -1).permute(0, 2, 1)))
                x_2 = self.act(self.norm2(self.sr2(x_).reshape(B, C, -1).permute(0, 2, 1)))
                kv1 = self.kv1(x_1).reshape(B, -1, 2, self.num_heads//2, C // self.num_heads).permute(2, 0, 3, 1, 4)
                kv2 = self.kv2(x_2).reshape(B, -1, 2, self.num_heads//2, C // self.num_heads).permute(2, 0, 3, 1, 4)
                k1, v1 = kv1[0], kv1[1] #B head N C
                k2, v2 = kv2[0], kv2[1]

                attn1 = (q[:, :self.num_heads//2] @ k1.transpose(-2, -1)) * self.scale
                attn1 = attn1.softmax(dim=-1)
                attn1 = self.attn_drop(attn1)
                v1 = v1 + self.local_conv1(v1.transpose(1, 2).reshape(B, -1, C//2).
                                        transpose(1, 2).view(B,C//2, H//self.sr_ratio, W//self.sr_ratio)).\
                    view(B, C//2, -1).view(B, self.num_heads//2, C // self.num_heads, -1).transpose(-1, -2)
                x1 = (attn1 @ v1).transpose(1, 2).reshape(B, N, C//2)

                attn2 = (q[:, self.num_heads // 2:] @ k2.transpose(-2, -1)) * self.scale
                attn2 = attn2.softmax(dim=-1)
                attn2 = self.attn_drop(attn2)
                v2 = v2 + self.local_conv2(v2.transpose(1, 2).reshape(B, -1, C//2).
                                        transpose(1, 2).view(B, C//2, H*2//self.sr_ratio, W*2//self.sr_ratio)).\
                    view(B, C//2, -1).view(B, self.num_heads//2, C // self.num_heads, -1).transpose(-1, -2)
                x2 = (attn2 @ v2).transpose(1, 2).reshape(B, N, C//2)

                x = torch.cat([x1,x2], dim=-1)
        else:
            kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
            k, v = kv[0], kv[1]
            attn = (q @ k.transpose(-2, -1)) * self.scale
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = (attn @ v).transpose(1, 2).reshape(B, N, C) + self.local_conv(v.transpose(1, 2).reshape(B, N, C).
                                        transpose(1, 2).view(B,C, H, W)).view(B, C, N).transpose(1, 2)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

实验结果

分类 检测与实例分割
Vision Transformer | CVPR 2022 Oral - Shunted Transformer: Shunted Self-Attention_第5张图片 Vision Transformer | CVPR 2022 Oral - Shunted Transformer: Shunted Self-Attention_第6张图片

你可能感兴趣的:(#,注意力机制,transformer,深度学习,人工智能,计算机视觉,卷积神经网络)