- 【人工智能】Python实战:构建高效的多任务学习模型
蒙娜丽宁
Python杂谈AI人工智能python学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界多任务学习(Multi-taskLearning,MTL)作为机器学习领域中的一种重要方法,通过在单一模型中同时学习多个相关任务,不仅能够提高模型的泛化能力,还能有效利用任务间的共享信息。本文深入探讨了多任务学习的基本概念、优势及其在实际应用中的重要性。
- 以Python构建ONE FACE管理界面:从基础至进阶的实战探索
Allen_LVyingbo
pythonpythonpyqt
一、引言1.1研究背景与意义在人工智能技术蓬勃发展的当下,面部识别技术凭借其独特优势,于安防、金融、智能终端等众多领域广泛应用。在安防领域,可助力监控系统精准识别潜在威胁人员,提升公共安全保障水平;金融行业中,实现刷脸支付、远程开户等便捷服务,优化用户体验并强化交易安全。智能终端方面,为设备解锁、身份验证等功能提供支持,提升设备使用的便捷性与安全性。然而,现有面部识别系统在数据安全、检索效率及用户
- 明达云:赋能化工园区,智绘安全高效新蓝图
明达技术
物联网网络
在日新月异的科技浪潮中,数字化转型已成为各行各业转型升级的关键驱动力。尤其在化工这一关乎国家经济命脉与安全环保的重要领域,如何实现智能化管理、提升运营效率、确保生产安全,成为了摆在众多化工园区面前的重大课题。在此背景下,明达云平台以其卓越的技术实力与深厚的行业经验,正逐步成为化工园区智慧化升级的首选伙伴。智慧监管,安全先行化工生产,安全为先。明达云平台通过集成物联网、大数据、人工智能等先进技术,为
- AI大模型:开启智能革命新纪元
洋洋科创星球
AI项目管理赋能实战人工智能
1.AI大模型技术:智能革命的新引擎自2022年11月30日OpenAI推出ChatGPT以来,这一大型语言模型(LLM)迅速走红,标志着AI领域进入了一个新的发展阶段,即AI大模型时代。这一时代预示着AI正朝着通用人工智能(AGI)的方向发展。尽管业界对大模型的定义尚未统一,但通常指的是基于Transformer框架的大型语言模型,广义上也包括了多模态大模型,如涉及语言、声音、图像、视频等,技术
- 比亚迪进军具身智能:未来实验室的战略布局与挑战
前端
比亚迪,这家以新能源汽车闻名全球的企业,正在悄然布局一个全新的领域——具身智能及机器人技术。近日,比亚迪成立未来实验室的消息引发广泛关注,其战略意义和未来发展前景值得我们深入探讨。在人工智能技术飞速发展的今天,选择合适的AI写代码工具对于项目的成功至关重要。比亚迪未来实验室的战略意义:汽车基因与智能融合比亚迪进军机器人领域并非偶然之举。其深厚的汽车制造经验和规模化生产能力,为其在机器人研发方面奠定
- 苹果携手腾讯字节跳动:AI代码生成器赋能iPhone,开启移动智能新时代?
前端
近年来,人工智能技术飞速发展,其在移动设备上的应用也日益普及。近日,路透社爆料称苹果公司正在与腾讯和字节跳动商谈,计划将它们的AI模型整合到在中国销售的iPhone中,这一消息迅速引发了业界广泛关注。这不仅预示着苹果在AI领域的战略布局进一步深化,也标志着AI技术在移动设备应用领域迈入了一个新的里程碑。这篇文章将深入探讨苹果此举的意义、挑战以及对整个AI产业的影响。整合AI模型:机遇与挑战并存苹果
- 关于2025年人工智能agent的5个预测
大模型微调实战
人工智能语言模型机器学习自然语言处理
2024年是人工智能agent走向主流的一年。从年初黑客们那些笨拙、昂贵且充满激情的项目开始,agent现在已经得到了科技巨头、SaaS公司、学术研究人员等更多人的接纳。与此同时,他们的形式也在不断增多,从文本扩展到多种模式,并在现实世界中执行行动的能力也变得更强大。在这里,我预测2025年agent领域的轨迹,因为它开始在人工智能社区之外产生影响力。1.对agent的兴趣持续激增今年,对人工智能
- 《AGI:开启智能新纪元的钥匙》
空云风语
人工智能深度学习神经网络agi人工智能深度学习AIGC
一、AGI:人工智能的进阶之路在科技飞速发展的当下,人工智能(AI)已逐渐渗透到我们生活的各个角落,从智能手机中的语音助手,到自动驾驶汽车,再到医疗领域的疾病诊断辅助,AI的身影无处不在。然而,在AI的宏大版图中,当前被广泛应用的大多属于狭义人工智能(NarrowAI),它专注于特定领域的任务执行,而通用人工智能(ArtificialGeneralIntelligence,简称AGI)则代表着人工
- 零售业的AI赋能与前端开发效率革命:ScriptEcho 的助力
前端
零售业正经历着前所未有的数字化转型,但同时也面临着巨大的挑战。库存管理混乱、个性化客户体验不足等问题,严重制约着零售企业的盈利能力。而人工智能(AI)的兴起,为解决这些问题提供了新的思路。通过AI驱动的实时库存管理和客户行为分析,零售企业可以显著提升运营效率和客户满意度。然而,构建这些AI赋能的零售应用,需要强大的前端开发能力,这正是AI代码生成器ScriptEcho能够发挥关键作用的地方。AI赋
- 人工智能时代,企业如何搭建自己的AI知识库
知识库知识库管理知识库软件
随着人工智能技术的迅猛发展,企业越来越意识到构建AI知识库的重要性。AI知识库不仅能够高效管理企业的海量知识资源,还能通过智能检索和推荐,提升员工的工作效率,促进企业的创新与发展。本文将详细探讨企业如何搭建自己的AI知识库,包括前期准备、技术选型、构建过程及后续维护等方面。一、前期准备在构建AI知识库之前,企业需要进行充分的前期准备,明确需求和目标。确定需求和目标企业首先需要明确知识库的服务对象、
- 科技早报|OpenAI的人工智能模型销售收入超过微软类似业务;荣耀中国区CMO辟谣将采用麒麟芯片 | 最新快讯
最新科技快讯
科技人工智能microsoft
科大讯飞新模型在测试集结果中超越GPT-4Turbo6月27日,科大讯飞发布讯飞星火大模型V4.0。与此前的版本相比,新模型在文本生成、语言理解、知识问答、逻辑推理、数学能力、代码能力、多模态能力等七大能力上都有提升。例如,讯飞星火可以根据用户的语言描述,结合空间和常识推断描述对象所在的位置。而在图文识别上,讯飞星火大模型V4.0能力也进一步升级,在科研、金融、医疗、司法、办公等场景的应用效果已领
- 中科曙光C/C++研发工程师二面
TrustZone_
ARM/Linux嵌入式面试c语言c++开发语言
自我介绍;针对项目:CNN模型、损失函数、评价指标、改进方向、计算加速;CNN模型CNN,即卷积神经网络,是一种专门用于处理具有类似网格结构数据的深度学习模型。它通过卷积层和池化层提取图像特征,并通过全连接层进行分类或回归预测。CNN在图像识别、目标检测和图像生成等领域取得了巨大成功。具体来说,CNN的模型结构包括输入层、卷积层、激活函数、池化层、全连接层和输出层。输入层接收图像数据,并将其转换为
- 产生式系统实验头歌实验测试不通过解决(人工智能)
兜里没有一毛钱
人工智能pythonnumpy数据分析人工智能机器学习
任务描述本关任务:编写一个使用产生式方法识别动物的系统。编程要求根据提示,在右侧编辑器补充代码,完成产生式系统——动物识别系统的操作,最后达到输入动物特征,输出动物类型的结果。特别说明在这个实验中,存在一个实验现象,就是你的自测运行输出结果与实验要求输出结果一模一样也不能通过,为什么呢?答:这个不知道算不算是头歌实验平台存在bug,一般我们在编写程序代码中,要求格式都是英文格式,但是在这个实验测试
- 改进yolov8工业缺陷检测+swin+transformer
qq1309399183
计算机视觉实战项目集合YOLOtransformer深度学习人工智能计算机视觉机器学习神经网络
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- 智能体(AI Agent)全解析:概念、原理至应用深度探索
网安猫叔
人工智能语言模型自然语言处理AIGC机器学习
一、智能体概念的深度剖析1.1智能体(Agent)的本质智能体,作为人工智能领域的一颗璀璨明珠,是那些能够主动感知周遭环境、自主决策并付诸实践的系统实体。它们不仅拥有自主性、交互性、反应灵敏及高度适应性等鲜明特征,更在复杂多变的情境中展现出卓越的自我管理与任务执行能力。智能体的诞生,标志着人工智能技术从机械式的规则遵循迈向了更为灵活、智能的自主决策新时代。智能体的核心精髓在于其内置的学习与决策引擎
- 改进yolov8缺陷检测+swin+transformer
QQ_1309399183
计算机视觉实战项目集锦YOLOtransformer深度学习人工智能计算机视觉opencv机器学习
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- 全网最全Stable diffusion保姆级教程「安装-配置-画图」,小白必收藏!!
AI想象家
stablediffusionAI作画midjourney人工智能深度学习
随着chatgpt爆火之后,越来越多的人开始关注人工智能,人工智能相关的其他应用如AI绘画,也再次得到人们的关注。AI绘画的确很上头,最近几天小编也研究一下,这里把研究的过程以及中间遇到的问题整理一下,我这里遇到的问题,相信新入门的小白也会遇到,希望本文对你能有一定的帮助。给大家带来了全新保姆级教程资料包(文末可获取)目前常用的AI绘画工具主要有两种:stablediffusion和midjour
- 【Python】成功解决ValueError: zero-size array to reduction operation minimum which has no identity
高斯小哥
BUG解决方案合集python新手入门学习debug
【Python】成功解决ValueError:zero-sizearraytoreductionoperationminimumwhichhasnoidentity个人主页:高斯小哥高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程希望得到您的订阅和支持~创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、
- 开源AI图像工具—Stable Diffusion
蚂蚁在飞-
人工智能stablediffusion
StableDiffusion是一种基于深度学习的生成式模型,用于图像生成、图像修复和风格转换等任务。它是由StabilityAI和CompVis团队联合开发的。StableDiffusion在生成高质量图像方面表现出色,并且是开源的,可以自由使用和扩展。StableDiffusion的核心技术1.扩散模型(DiffusionModels):•基于概率生成模型。•从噪声中逐步反向生成清晰的图像。•
- 机器学习:scikit-learn 和 Jupyter Notebook(推荐初学者使用google colab)
wyc9999ww
机器学习scikit-learnjupyter人工智能python
对于初学者来说,scikit-learn是一个理想的机器学习入门工具。不仅提供了丰富的算法和功能,还通过一致的API设计,确保能够快速上手并进行各种机器学习任务。通过使用scikit-learn,可以专注于理解和实践机器学习的核心概念,而不必过多担心底层实现细节。所以scikit-learn能轻松实现从数据预处理到模型训练和评估的完整流程。此外在推荐一个适合初学者的深度学习平台工具googleco
- AI赋能:高职院校实验实训教学如何拥抱人工智能浪潮?
武汉唯众智创
人工智能实训人工智能实验实训教学
随着信息技术的迅猛发展,人工智能技术已成为推动社会各行业转型升级的核心力量。它不仅在提升生产效率、优化管理流程、提高服务质量方面发挥着关键作用,也深刻影响着高职教育的专业发展和课程教学内容的改革。作为培养专业技术技能人才的摇篮,高职院校必须创新其教学模式和方法,以适应新的发展需求,从而培育出能够适应未来技术变革的高素质人才。特别是在实验实训教学领域,人工智能的融入为职业教育改革提供了新的思路和工具
- 【深度学习】CrossEntropyLoss需要手动softmax吗?
zz的学习笔记本
深度学习深度学习人工智能
【深度学习】CrossEntropyLoss需要手动softmax吗?问题:CrossEntropyLoss需要手动softmax吗?答案:不需要官方文档代码解释问题:CrossEntropyLoss需要手动softmax吗?之前用pytorch实现自己的网络时,使用CrossEntropyLoss的时候将网路输出经softmax激活层后再计算CrossEntropyLoss。答案:不需要调用了损
- 有趣的python代码实例_Python之路:200个Python有趣的小例子一网打尽
weixin_39845406
有趣的python代码实例
概述博主最近在学习python,看完了一整套学习视频,然后呃呃呃,还是用不太流畅。碰巧在全球最大的同性交友论坛GayHub(呸!是开源代码托管平台Github)上面发现了一个项目,该项目列举了200多个Python小例子,Python基础、Python坑点、Python字符串和正则、Python绘图、Python日期和文件、Web开发、数据科学、机器学习、深度学习、TensorFlow、Pytor
- 迁移学习与RBF神经网络
fanxbl957
人工智能理论与实践迁移学习神经网络人工智能
迁移学习与RBF神经网络一、引言在机器学习和深度学习领域,迁移学习和神经网络都是备受关注的重要技术。迁移学习旨在将从一个或多个源任务中学习到的知识应用到目标任务中,以加快目标任务的学习过程,提高学习效果,尤其在数据稀缺或训练资源有限的情况下展现出显著优势。而RBF(径向基函数)神经网络作为一种经典的神经网络结构,以其独特的函数逼近能力和良好的局部逼近特性,在众多领域取得了出色的性能表现。将迁移学习
- “数据飞轮” 理念焕新,助力 2025 企业数智化发展
大数据大模型
2024年,全球科技领域在人工智能浪潮的席卷下加速前行,数字化转型进程也随之踏入全新阶段。在这一背景下,数据飞轮理念延续“以数据消费促资产建设,以数据消费助业务发展”的核心内涵,实现焕新升级。在2025年,升级后的数据飞轮2.0,将AI视作数智化的核心竞争力,借助AI技术推动企业更普惠的数据消费。“数据飞轮”2.0的理念,带来了多方面的显著升级。其一,它将AI技术深度融入数据生产、管理与应用各环节
- 用大数据“喂养”出来的AI模型ChatGPT 爆火是大数据、大算力、强算法的支撑,中国缺乏的什么?
Ai17316391579
深度学习服务器人工智能
先来了解一下ChatGPT的基本情况ChatGPT本质属于生成式人工智能,属于无监督或半监督的机器学习。与之相关的还有Discriminativemodeling区分式模型,区分式模型大多属于监督式学习。生成性人工智能目前有两种主要的框架:GAN(GenerativeAdversarialNetwork)和GPT(GenerativePre-trainedTransformer)。GAN目前广泛应
- 英伟达最新的算力芯片Blackwell芯片名为GB200
算力资源比较多
算力智算大模型人工智能gpu算力语言模型大数据推荐算法
英伟达最新的算力芯片相关信息如下:Blackwell芯片:英伟达在2024年6月2日由创始人兼CEO黄仁勋宣布,其Blackwell芯片已开始投产。第一款Blackwell芯片名为GB200,被宣称为目前“全球最强大的芯片”。Blackwell芯片基于新的BlackwellGPU架构,专为人工智能模型设计。每个B200GPU包含2080亿个晶体管,GB200由两个这样的GPU和一个GraceCPU
- Python语言的编程范式
AI向前看
包罗万象golang开发语言后端
Python语言的编程范式Python是一种广泛使用的高级编程语言,它因其简单易读的语法和强大的功能而受到程序员的喜爱。自1991年由荷兰人GuidolvanRossum首次发布以来,Python的发展迅速,其应用范围涵盖了Web开发、数据分析、人工智能、科学计算、自动化等多个领域。本文将深入探讨Python的编程范式,帮助读者更好地理解该语言的特性和优势。1.什么是编程范式编程范式是对程序设计风
- 火山引擎数据飞轮2.0:聚焦Data+AI,驱动企业数智化转型
大数据
数字化浪潮席卷全球,数据与人工智能的融合正给各行各业带来巨大变革,不仅重塑数据处理流程,更在决策支持、业务优化、产品创新等多个维度上展现巨大的潜力。近期,火山引擎数智平台技术和产品专家受邀出席DataFun首届“数据与人工智能解决方案大会”,围绕数据飞轮2.0模式,及Data+AI领域热门话题ChatBI、多模态数据湖展开分享。据介绍,2023年4月火山引擎发布了数据飞轮,其内核为“以数据消费促资
- AI未来趋势:AIGC浪潮下看AI训练师如何塑造智能未来(技术变革)
用心去追梦
前端htmlcss
在AIGC(AIGeneratedContent,人工智能生成内容)浪潮下,AI训练师扮演着至关重要的角色,他们不仅推动了技术的发展,还在确保这些技术能够安全、高效地服务于社会方面发挥了重要作用。以下是AI训练师如何塑造智能未来的几个关键方面:1.技术变革与创新算法与模型训练预训练:通过大规模无标注数据的学习,构建具备基础语言理解和生成能力的基座模型。这一过程为后续更精细的任务打下了坚实的基础。指
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep