强化学习-Q-learning FrozenLake-V0 实现

Q-learning算法是比较经典的强化学习入门算法,本文以FrozenLake-V0为例,介绍Q-learning的相关实现。

首先定义一个Agent类,sample函数就是使用epsilon-greedy的采样方法,predict则是根据当前的观察值来预测输出的动作,learn就是通过输入当前的观察值obs,当前的动作action,奖励reward以及下一个时刻的观察值next_obs来更新Q值表。

代码:

class QLearningAgent(object):
    def __init__(self, obs_n, act_n, learning_rate=0.01, gamma=0.9, e_greed=0.1):
        self.act_n = act_n  # 动作维度,有几个动作可选
        self.lr = learning_rate  # 学习率
        self.gamma = gamma  # reward的衰减率
        self.epsilon = e_greed  # 按一定概率随机选动作
        self.Q = np.zeros((obs_n, act_n))

    # 根据输入观察值,采样输出的动作值,带探索
    def sample(self, obs):
        rd_p = np.random.uniform(0, 1)
        if rd_p <= self.epsilon:
            action = np.random.choice(self.act_n)
        else:
            action = self.predict(obs)
        return action

    # 根据输入观察值,预测输出的动作值
    def predict(self, obs):
        Q_max = np.max(self.Q[obs, :])
        action_list = np.where(self.Q[obs, :] == Q_max)[0]
        action = np.random.choice(action_list)
        return action

    # 学习方法,也就是更新Q-table的方法
    def learn(self, obs, action, reward, next_obs, done):
        """ off-policy
            obs: 交互前的obs, s_t
            action: 本次交互选择的action, a_t
            reward: 本次动作获得的奖励r
            next_obs: 本次交互后的obs, s_t+1
            done: episode是否结束
        """
        predict_Q = self.Q[obs, action]
        if done:
            target_Q = reward
        else:
            # target_Q = reward + self.gamma*np.max(self.Q[obs,:])
            target_Q = reward + self.gamma * np.max(self.Q[next_obs, :])
        # 迭代更新Q表
        self.Q[obs, action] += self.lr * (target_Q - predict_Q)

    # 保存Q表格数据到文件
    def save(self):
        npy_file = './q_table.npy'
        np.save(npy_file, self.Q)
        print(npy_file + ' saved.')

    # 从文件中读取数据到Q表格中
    def restore(self, npy_file='./q_table.npy'):
        self.Q = np.load(npy_file)
        print(npy_file + ' loaded.')

然后定义训练和测试的方法,env是训练的环境, 此处使用的gym的环境。

def run_episode(env, agent, render=False):
    total_steps = 0 # 记录每个episode走了多少step
    total_reward = 0

    obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)

    while True:
        action = agent.sample(obs) # 根据算法选择一个动作
        next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
        # 训练 Q-learning算法
        agent.learn(obs, action, reward, next_obs, done)

        obs = next_obs  # 存储上一个观察值
        total_reward += reward
        total_steps += 1 # 计算step数
        if render:
            env.render() #渲染新的一帧图形
        if done:
            break
    return total_reward, total_steps

def test_episode(env, agent):
    total_reward = 0
    obs = env.reset()
    while True:
        action = agent.predict(obs) # greedy
        next_obs, reward, done, _ = env.step(action)
        total_reward += reward
        obs = next_obs
        time.sleep(0.5)
        env.render()
        if done:
            break
    return total_reward

最后将定义的agent放到环境中进行训练和测试

# 使用gym创建迷宫环境,设置is_slippery为False降低环境难度
env = gym.make("FrozenLake-v0", is_slippery=False)  # 0 left, 1 down, 2 right, 3 up

# 创建一个agent实例,输入超参数
agent = QLearningAgent(
        obs_n=env.observation_space.n,
        act_n=env.action_space.n,
        learning_rate=0.1,
        gamma=0.9,
        e_greed=0.3)


# 训练500个episode,打印每个episode的分数
for episode in range(500):
    ep_reward, ep_steps = run_episode(env, agent, False)
    print('Episode %s: steps = %s , reward = %.1f' % (episode, ep_steps, ep_reward))

# 全部训练结束,查看算法效果
test_reward = test_episode(env, agent)
print('test reward = %.1f' % (test_reward))

使用gym的FrozenLake-V0环境进行训练,如下图所示,F为frozen lake,H为hole,S为起点,G为终点,掉到hole里就游戏结束,可以有上每一步可以有上下左右四个方向的走法,只有走到终点G才能得1分。

强化学习-Q-learning FrozenLake-V0 实现_第1张图片

经过500次episode训练,可以找到一条比较好的路径:

强化学习-Q-learning FrozenLake-V0 实现_第2张图片

本文的学习资料出自 <百度强化学习7日打卡营-世界冠军带你从零实践>课程。

你可能感兴趣的:(算法,强化学习,深度学习,神经网络,机器学习)