- 【AI】在Windows10下部署本地LLM RAG服务
每日出拳老爷子
ai人工智能ailangchainGPT
【背景】上一篇介绍了如何用Ubuntu命令行部署ollamaLLM+RAG服务。部署后等于拥有了基于内网的AISaas服务,其它内网用户可以通过默认的网址访问Playground对AI进行问答。【概念】RAG:通过词向量技术,将文件内容向量化后,通过语言模型以自然交流的形式得到文本相关的内容。可以形容为与文件库或知识库对话的系统。RAG的后台向量库并不需要对LLM产生影响,LLM是人与向量库(知识
- 预训练语言模型的前世今生 - 从Word Embedding到BERT
脚步的影子
语言模型embeddingbert
目录一、预训练1.1图像领域的预训练1.2预训练的思想二、语言模型2.1统计语言模型2.2神经网络语言模型三、词向量3.1独热(Onehot)编码3.2WordEmbedding四、Word2Vec模型五、自然语言处理的预训练模型六、RNN和LSTM6.1RNN6.2RNN的梯度消失问题6.3LSTM6.4LSTM解决RNN的梯度消失问题七、ELMo模型7.1ELMo的预训练7.2ELMo的Fea
- fastText 情感分类
dreampai
情感分类任务就是看一段文本,然后分辨这个人是否喜欢他们在讨论的这个东西。情感分类一个最大的挑战就是可能标记的训练集没有那么多,但是有了词嵌入,即使只有中等大小的标记的训练集,你也能构建一个不错的情感分类器image.pngimage.png假设有一个句子:“这个衣服质量不错”通过分词、去除停用词等预处理操作,得到“衣服/质量/不错”获取“衣服”、“质量”、“不错”的对应词向量(可以通过TF-IDF
- NLP中的词向量及其应用
喜欢打酱油的老鸟
NLP词向量
https://www.toutiao.com/a6643219722961682947/2019-01-0611:25:24词向量基本上是一种单词表示形式,它将人类对语言的理解与机器的理解连接起来。词向量是文本在n维空间中的分布式表示。这些是解决大多数NLP问题所必需的。领域适应是一种技术,它允许机器学习和转移学习模型来映射小生境数据集,这些数据集都是用同一种语言编写的,但在语言上仍然不同。例如
- 深度学习100问28:什么是RNNLM(RNN语言模型)
不断持续学习ing
人工智能自然语言处理机器学习
嘿,你知道RNNLM是啥不?简单来说,它就像是一个语言小魔法师。想象一下,RNNLM是一个特别会猜词的小伙伴。它的任务呢,就是预测一个句子出现的概率,或者当你给它一些上文的时候,它能猜出下一个词会是啥。它是怎么做到的呢?它有一个像魔法盒子一样的结构,由输入层、隐藏层和输出层组成。输入层就像是接收魔法信号的入口,把词的表示,比如一些特别的编码或者词向量给接收进来。隐藏层可神奇啦,它就像有个记忆小口袋
- 深度学习100问10-什么是CBOW模型
不断持续学习ing
人工智能自然语言处理机器学习深度学习
CBOW(ContinuousBagofWords)模型是一种用于训练词向量的方法。想象一下,CBOW就像是一个猜词游戏。它从一个文本中选取一个词作为目标词,然后把这个目标词周围的几个词当成线索。CBOW的任务就是根据这些线索来猜出目标词是什么。为了完成这个任务,CBOW会先把这些线索词(周围的词)都转换成向量,然后把这些向量加起来或者求平均,得到一个综合的向量表示。接着,CBOW会用这个综合向量
- 单词向量化
西域记
1.使用CountVectorizer将文本转化为向量fromsklearn.feature_extraction.textimportCountVectorizervect=CountVectorizer()dialog=['Ihaveaddictedintocybersecurityforyears']vect.fit(dialog)print(vect.vocabulary_)输出结果是一个
- 使用Python实现文本向量化(一)——腾讯词向量
Shy960418
Python使用技巧深度学习python人工智能
Docs向量化(Embedding)Embedding也是文本语义含义的信息密集表示,每个嵌入都是一个浮点数向量,使得向量空间中两个嵌入之间的距离与原始格式中两个输入之间的语义相似性相关联。例如,如果两个文本相似,则它们的向量表示也应该相似,这一组向量空间内的数组表示描述了文本之间的细微特征差异。简单来说,Embedding帮助计算机来理解如人类信息所代表的“含义”,Embedding可以用来获取
- Transformer、BERT和GPT 自然语言处理领域的重要模型
Jiang_Immortals
人工智能自然语言处理transformerbert
Transformer、BERT和GPT都是自然语言处理领域的重要模型,它们之间有一些区别和联系。区别:架构:Transformer是一种基于自注意力机制的神经网络架构,用于编码输入序列和解码输出序列。BERT(BidirectionalEncoderRepresentationsfromTransformers)是基于Transformer架构的双向编码模型,用于学习上下文无关的词向量表示。GP
- 计算机设计大赛 深度学习的智能中文对话问答机器人
iuerfee
python
文章目录0简介1项目架构2项目的主要过程2.1数据清洗、预处理2.2分桶2.3训练3项目的整体结构4重要的API4.1LSTMcells部分:4.2损失函数:4.3搭建seq2seq框架:4.4测试部分:4.5评价NLP测试效果:4.6梯度截断,防止梯度爆炸4.7模型保存5重点和难点5.1函数5.2变量6相关参数7桶机制7.1处理数据集7.2词向量处理seq2seq7.3处理问答及答案权重7.4训
- SPSSAU【文本分析】|文本聚类
spssau
支持向量机机器学习人工智能
SPSSAU共提供两种文本聚类方式,分别是按词聚类和按行聚类。按词聚类是指将需要分析的关键词进行聚类分析,并且进行可视化展示,即针对关键词进行聚类,此处关键词可以自由选择。按行聚类分析是指针对以‘行’为单位进行聚类分析,将原始文本中多行数据聚为几个类别,并且可将具体聚类类别信息进行下载等。按词聚类分析按词聚类分析操作如下图:默认情况下,系统会将词频靠前的20个关键词提取,并且得到其词向量值,并且其
- 自然语言处理N天-AllenNLP学习(实现简单的词性标注)
我的昵称违规了
新建MicrosoftPowerPoint演示文稿(2).jpg1.前言在了解了Transformer之后,这个模型是否可用呢?现在遇到的问题是,目前试了几个模型(LSTM、GRU、Transformer),但是还没有放入实践中,具体应该怎么操作?有一篇帖子总结了一下学习处理NLP问题中间的坑。NLP数据预处理要比CV的麻烦很多。去除停用词,建立词典,加载各种预训练词向量,Sentence->Wo
- Task5 基于深度学习的文本分类2
listentorain_W
Task5基于深度学习的文本分类2在上一章节,我们通过FastText快速实现了基于深度学习的文本分类模型,但是这个模型并不是最优的。在本章我们将继续深入。基于深度学习的文本分类本章将继续学习基于深度学习的文本分类。学习目标学习Word2Vec的使用和基础原理学习使用TextCNN、TextRNN进行文本表示学习使用HAN网络结构完成文本分类文本表示方法Part3词向量本节通过word2vec学习
- 使用word2vec+tensorflow自然语言处理NLP
取名真难.
机器学习自然语言处理word2vectensorflow机器学习深度学习神经网络
目录介绍:搭建上下文或预测目标词来学习词向量建模1:建模2:预测:介绍:Word2Vec是一种用于将文本转换为向量表示的技术。它是由谷歌团队于2013年提出的一种神经网络模型。Word2Vec可以将单词表示为高维空间中的向量,使得具有相似含义的单词在向量空间中距离较近。这种向量表示可以用于各种自然语言处理任务,如语义相似度计算、文本分类和命名实体识别等。Word2Vec的核心思想是通过预测上下文或
- 大模型位置编码、长度外推问题、ALiBi知识
lichunericli
LLM人工智能语言模型
1什么是位置编码?位置编码是一种用于在序列数据中为每个位置添加位置信息的技术。在自然语言处理中,位置编码通常用于处理文本序列。由于传统的神经网络无法直接捕捉输入序列中的位置信息,位置编码的引入可以帮助模型更好地理解和处理序列数据。在Transformer模型中,位置编码通过为输入序列中的每个位置分配一个固定的向量来实现。这些向量会与输入序列中的词向量相加,以融合位置信息。位置编码的设计目的是使模型
- word2vec工具学习笔记
适说心语
今天是第一次听说这个工具,本来是为了解决非目标客户的问题,但是要从头了解这个内容,所以边找资料边记录一下!一、简介Word2vec,是为一群用来产生词向量的相关模型。这些模型为浅而双层的神经网络,用来训练以重新建构语言学之词文本。网络以词表现,并且需猜测相邻位置的输入词,在word2vec中词袋模型假设下,词的顺序是不重要的。训练完成之后,word2vec模型可用来映射每个词到一个向量,可用来表示
- Keras使用使用动态LSTM/RNN
Sailist
TensorFlow
padding:defgenerate(mtp=100,batch=50):#最长时间步,词向量长度为200,batch_size=50origin_input=np.random.random_sample([batch,np.random.randint(mtp/2,mtp),200])#时间长随机从mtp/2-mtp选择returnpad_sequences(origin_input,mtp
- 【简单文本相似度分析】( LCS | Trie | DP | 词频统计 | hash | 单词分割 )
XNB's Not a Beginner
算法哈希算法算法c++数据结构链表hashtable
两个文本的相似度的指标有很多,常见的有词袋分析,词向量余弦,LCS(子串,子序列),Jaccard相似度分析(单词集合的对称差和最小全集比值),编辑距离等等我在自己的程序里只定义两个指标:1单词重复度2最长公共子序列长度首先用c++builtin的字符输入流对象istringstream做单词分割然后用我自己写的patriacatrie树当作词袋,把词量小的string做映射集合(类似重链合并),
- Python与自然语言处理库Gensim实战
心梓知识
python自然语言处理easyui
一、Gensim简介Gensim是一款Python自然语言处理库。它能够自动化训练出一个文本语料库,然后用该语料库来训练出一个词向量模型。在语料库中,每个语料库都是由一个个文档组成,每个文档则是由若干个单词组成。Gensim相对于其他Python自然语言处理库的优点在于它的速度和内存占用率较低。同时它还提供了许多文本处理的功能,比如文档相似度计算和主题建模等。二、安装Gensim在安装Gensim
- 【NLP 自然语言处理(一)---词向量】
y_dd
深度学习自然语言处理人工智能
文章目录什么是NLP自然语言处理发展历程自然语言处理模型模型能识别单词的方法词向量分词一个向量vector表示一个词词向量的表示-one-hot多维词嵌入wordembeding词向量的训练方法CBOWSkip-gram词嵌入的理论依据一个vector(向量)表示短语或者文章vectorspaceModelbag-of-wordvectorspaceModel+bag-of-word实现信息搜索改
- NLP自然语言处理实战(三):词频背后的语义--5.距离和相似度&反馈及改进
Nobitaxi
NLP自然语言处理实战学习自然语言处理机器学习人工智能
目录1.距离和相似度2.反馈及改进线性判别分析1.距离和相似度我们可以使用相似度评分(或距离),根据两篇文档的表达向量间的相似度(或距离)来判断文档间有多相似。LSA能够保持较大的距离,但它并不能总保持较小的距离(文档之间关系的精细结构)。LSA底层的SVD算法的重点是使新主题向量空间中所有文档之间的方差最大化。特征向量(词向量、主题向量、文档上下文向量等)之间的距离驱动着NLP流水线或任何机器学
- 人工智能|深度学习——使用多层级注意力机制和keras实现问题分类
博士僧小星
人工智能#深度学习【算法】人工智能深度学习keras多层注意力问题分类
代码下载使用多层级注意力机制和keras实现问题分类资源-CSDN文库1准备工作1.1什么是词向量?”词向量”(词嵌入)是将一类将词的语义映射到向量空间中去的自然语言处理技术。即将一个词用特定的向量来表示,向量之间的距离(例如,任意两个向量之间的L2范式距离或更常用的余弦距离)一定程度上表征了的词之间的语义关系。由这些向量形成的几何空间被称为一个嵌入空间。传统的独热表示(one-hotrepres
- 词共现矩阵表示词向量和点互信息
浅白Coder
自然语言处理自然语言处理深度学习人工智能
1.文档中某些字/词出现的频次往往能反应该字在文档中的重要程度,也从侧面反应了文档的主题,比如一个新闻,如果出现很多类似“足球”“篮球”词汇的描述,我们可以大概率推断这是一个关于体育的新闻。但是有些高频词会影响我们对文档的分析,比如“我”“你”“。、,!”这种词汇在文档中的数目非常多,但对于我们分析文档,没有什么益处,毕竟所有的文档,基本都包括这些内容。2.NLP中对于给定一个句子,其中是一个单词
- NLP_词的向量表示Word2Vec 和 Embedding
you_are_my_sunshine*
NLP自然语言处理word2vecembedding
文章目录词向量Word2Vec:CBOW模型和Skip-Gram模型通过nn.Embedding来实现词嵌入Word2Vec小结词向量下面这张图就形象地呈现了词向量的内涵:把词转化为向量,从而捕捉词与词之间的语义和句法关系,使得具有相似含义或相关性的词语在向量空间中距离较近。我们把语料库中的词和某些上下文信息,都“嵌入”了向量表示中。将词映射到向量空间时,会将这个词和它周围的一些词语一起学习,这就
- word2vec
e237262360d2
将词表征为实数值向量的高效工具,采用的模型有CBOW(Continuesbag-of-words连续词袋模型)和Skip-Gram两种。word2vec通过训练,可以把对文本内容的处理简化为K维向量空间中的向量运算词向量:把一个词表示成一个向量One-hotRepresentation维度是词典的大小DistributedRepresentation维度以50,100比较常见CBOW:用上下文预测
- 【PyTorch][chapter 14][李宏毅深度学习][Word Embedding]
明朝百晓生
深度学习pytorchembedding
前言:这是用于自然语言处理中数据降维的一种方案。我们希望用一个向量来表示每一个单词.有不同的方案目录:one-hotEncodingword-class词的上下文表示count-basedperdition-basedCBOWSkip-GramwordEmbedding词向量相似度一one-hotEncoding假设英文有10万个单词,那每个单词用1个10万维的one-hot编码表示。其中只有1个
- Word2Vec ——gensim实战教程
王同学死磕技术
最近斯坦福的CS224N开课了,看了下课程介绍,去年google发表的Transformer以及最近特别火的ContextualWordEmbeddings都会在今年的课程中进行介绍。NLP领域确实是一个知识迭代特别快速的领域,每年都有新的知识冒出来。所以身处NLP领域的同学们要时刻保持住学习的状态啊。笔者又重新在B站上看了这门课程的第一二节课。这里是课程链接。前两节课的主要内容基本上围绕着词向量
- python使用正则匹配判断字符串中含有某些特定子串及正则表达式详解
浮生若梦777
pythonpython开发语言
目录一、判断字符串中是否含有字串二、正则表达式(一)基本内容1.正则表达式修饰符——可选标志2.正则表达式模式(二)常见表达式函数一、判断字符串中是否含有字串in,notin判断字符串中是否含有某些关键词,方法比较多例如分词后对词向量和关键词进行==匹配,但这种方法以来分词的准确性,不太推荐;其次使用成员运算符in,notin可以较好的判断字符串中是否包含某关键词,即特定字串a='这个暑假我读了红
- NLP_统计语言模型的发展历程
you_are_my_sunshine*
NLP自然语言处理语言模型人工智能
文章目录统计语言模型发展的里程碑:上半部分是语言模型技术的进展;下半部分则是词向量(词的表示学习)技术的发展。其中,词向量表示的学习为语言模型提供了更高质量的输入信息(词向量表示)1948年,著名的N-Gram模型诞生,思路是基于前N-1个项目来预测序列中的第N个项目,所谓的“项目”,就是词或者短语。1954年的Bag-of-Words模型是一种简单且常用的文本表示方法,它将文本表示为一个单词的集
- TensorFlow2实战-系列教程11:RNN文本分类3
机器学习杨卓越
TensorFlow深度学习tensorflowrnnnlp文本分类
TensorFlow2实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在JupyterNotebook中进行本篇文章配套的代码资源已经上传6、构建训练数据所有的输入样本必须都是相同shape(文本长度,词向量维度等)tf.data.Dataset.from_tensor_slices(tensor):将tensor沿其第一个维度切片,返回一个含有N个样本的数据集,这样做的问题就
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟