本文实现基于python调用dlib库,并利用欧氏距离计算人脸的特征分析得出属于哪个人
import os,dlib,glob,numpy,time,cv2,re,json
from PIL import ImageFont, ImageDraw, Image
self.leave = 2
self.faces_folder_path = faces_folder_path # 候选人脸文件夹
self.detectionPath = detection_path
if detection_path is None: # 加载正脸检测器
self.detector = dlib.get_frontal_face_detector()
else:
self.detector = dlib.cnn_face_detection_model_v1(detection_path)
self.sp = dlib.shape_predictor(predictor_path) # 加载人脸关键点检测器
self.facerec = dlib.face_recognition_model_v1(face_rec_model_path) # 加载人脸识别模型
此过程主要是加载一张图片得到标准人脸的特征,用于在检测过程中区分人脸
if self.PeronFile is None or os.path.exists(self.PeronFile)==False:
self.dataDBDict={}
for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
n = re.findall(r"\\(.*?)\.jpg",f)[0]
self.dataDBDict[n]=None
img = cv2.imdecode(numpy.fromfile(f, dtype=numpy.uint8), 1)
dets = self.detector(img, self.leave)
if len(dets) == 1:
for k, d in enumerate(dets):
if self.detectionPath is not None:
d = dlib.rectangle(d.rect.left(), d.rect.top(), d.rect.right(), d.rect.bottom())
shape = self.sp(img, d)
face_descriptor = self.facerec.compute_face_descriptor(img, shape)
v = numpy.array(face_descriptor)
self.dataDBDict[n] = v.tolist()
print('加载数据成功:%s'%n)
else:
print('加载数据失败:%s'%n)
with open('./data/Person.json', 'w', encoding='utf-8') as f:
f.write(json.dumps(self.dataDBDict, sort_keys=True, indent=4, separators=(',', ': ')))
else:
print('加载数据文件')
with open(self.PeronFile, 'r', encoding='utf-8') as json_file:
self.dataDBDict = json.load(json_file)
def predict(self,img):
res_data = []
dets = self.detector(img, self.leave)
if len(dets)<=0:
return res_data
for k, d in enumerate(dets):
if self.detectionPath is not None:
d = dlib.rectangle(d.rect.left(), d.rect.top(), d.rect.right(), d.rect.bottom())
each_face = {}
each_face['rectange'] = (d.left(),d.top(),d.right(),d.bottom())
shape = self.sp(img, d)
face_descriptor = self.facerec.compute_face_descriptor(img, shape)
d_test = numpy.array(face_descriptor)
dist = []
for key,value in self.dataDBDict.items():
dist_ = numpy.linalg.norm(numpy.array(value) - d_test)
dist.append(dist_)
c_d = dict(zip(list(self.dataDBDict.keys()), dist))
cd_sorted = sorted(c_d.items(), key=lambda d: d[1])
each_face['name'] = "UnKnow" if (1-cd_sorted[0][1]) < self.score else cd_sorted[0][0]
each_face['score'] = 1-cd_sorted[0][1]
res_data.append(each_face)
return res_data
完整代码实现
import os,dlib,glob,numpy,time,cv2,re,json
from PIL import ImageFont, ImageDraw, Image
class FaceCheck:
def __init__(self,detection_path=None,predictor_path=None,face_rec_model_path=None,faces_folder_path=None,score=0.4,PeronFile=None):
self.leave = 2
self.faces_folder_path = faces_folder_path # 候选人脸文件夹
self.detectionPath = detection_path
if detection_path is None: # 加载正脸检测器
self.detector = dlib.get_frontal_face_detector()
else:
self.detector = dlib.cnn_face_detection_model_v1(detection_path)
self.sp = dlib.shape_predictor(predictor_path) # 加载人脸关键点检测器
self.facerec = dlib.face_recognition_model_v1(face_rec_model_path) # 加载人脸识别模型
self.score = score
self.PeronFile = PeronFile
if self.PeronFile is None or os.path.exists(self.PeronFile)==False:
self.dataDBDict={}
for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
n = re.findall(r"\\(.*?)\.jpg",f)[0]
self.dataDBDict[n]=None
img = cv2.imdecode(numpy.fromfile(f, dtype=numpy.uint8), 1)
dets = self.detector(img, self.leave)
if len(dets) == 1:
for k, d in enumerate(dets):
if self.detectionPath is not None:
d = dlib.rectangle(d.rect.left(), d.rect.top(), d.rect.right(), d.rect.bottom())
shape = self.sp(img, d)
face_descriptor = self.facerec.compute_face_descriptor(img, shape)
v = numpy.array(face_descriptor)
self.dataDBDict[n] = v.tolist()
print('加载数据成功:%s'%n)
else:
print('加载数据失败:%s'%n)
with open('./data/Person.json', 'w', encoding='utf-8') as f:
f.write(json.dumps(self.dataDBDict, sort_keys=True, indent=4, separators=(',', ': ')))
else:
print('加载数据文件')
with open(self.PeronFile, 'r', encoding='utf-8') as json_file:
self.dataDBDict = json.load(json_file)
def getPicture(self,CameraID:int=0):
cap = cv2.VideoCapture(CameraID)
while True:
ret, img = cap.read()
cv2.imshow("Camera",img)
if cv2.waitKey(1) & 0xFF == ord('p'):
name = input("请输入名字:")
break
cap.release()
cv2.destroyAllWindows()
dets = self.detector(img, self.leave)
if len(dets)!=1:
print("载入数据库失败")
cv2.imwrite(self.faces_folder_path +"/%s.jpg" % name, img)
self.dataDBDict[name] = None
for k, d in enumerate(dets):
if self.detectionPath is not None:
d = dlib.rectangle(d.rect.left(), d.rect.top(), d.rect.right(), d.rect.bottom())
shape = self.sp(img, d)
face_descriptor = self.facerec.compute_face_descriptor(img, shape)
v = numpy.array(face_descriptor)
self.dataDBDict[name] = v.tolist()
print('加载数据成功:%s'%name)
with open(self.PeronFile if self.PeronFile is not None else './data/Person.json', 'w', encoding='utf-8') as f:
f.write(json.dumps(self.dataDBDict, sort_keys=True, indent=4, separators=(',', ': ')))
def predict(self,img):
res_data = []
dets = self.detector(img, self.leave)
if len(dets)<=0:
return res_data
for k, d in enumerate(dets):
if self.detectionPath is not None:
d = dlib.rectangle(d.rect.left(), d.rect.top(), d.rect.right(), d.rect.bottom())
each_face = {}
each_face['rectange'] = (d.left(),d.top(),d.right(),d.bottom())
shape = self.sp(img, d)
face_descriptor = self.facerec.compute_face_descriptor(img, shape)
d_test = numpy.array(face_descriptor)
dist = []
for key,value in self.dataDBDict.items():
dist_ = numpy.linalg.norm(numpy.array(value) - d_test)
dist.append(dist_)
c_d = dict(zip(list(self.dataDBDict.keys()), dist))
cd_sorted = sorted(c_d.items(), key=lambda d: d[1])
each_face['name'] = "UnKnow" if (1-cd_sorted[0][1]) < self.score else cd_sorted[0][0]
each_face['score'] = 1-cd_sorted[0][1]
res_data.append(each_face)
return res_data
if __name__ == '__main__':
ctu = FaceCheck(detection_path='./data/dat/detection.dat', predictor_path='./data/dat/predictor.dat', face_rec_model_path='./data/dat/model.dat', faces_folder_path='./data/database', score=0.4, PeronFile='./data/Person.json')
cap = cv2.VideoCapture(0)
while True:
ret, img = cap.read()
# img_t = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# h, s, v = cv2.split(img_t)
# v1 = numpy.clip(cv2.add(1 * v, 30), 0, 255)
# img = numpy.uint8(cv2.merge((h, s, v1)))
# img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)
predict_res = ctu.predict(img)
for each_Face in predict_res:
cv2.rectangle(img, (each_Face['rectange'][0], each_Face['rectange'][1]), (each_Face['rectange'][2], each_Face['rectange'][3]), (0, 255, 0), 1)
label = "{}, {}".format(each_Face['name'], each_Face['score'])
cv2img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
pilimg = Image.fromarray(cv2img)
draw = ImageDraw.Draw(pilimg)
font = ImageFont.truetype('./data/font/simfang.ttf', 18, encoding="utf-8")
draw.text((each_Face['rectange'][0], each_Face['rectange'][1] - 18), label, (255, 0, 0), font=font)
img = cv2.cvtColor(numpy.array(pilimg), cv2.COLOR_RGB2BGR)
print(predict_res)
cv2.imshow('Camrea', img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()