python 数据预处理

观察数据

  1. housing.info()
  2. housing.describe()
  3. housing.hist(bins=50, figsize=(20,15)) # 连续数据 plt.show()

离散变量使用value_counts()观察:
housing[‘ocean_proximity’].value_counts()

分割数据为测试数据和训练数据
方法1 train_test_split
from sklearn.model_selection import train_test_split
train_set,test_set = train_test_split(housing,test_size=0.2,random_state=42)
方法2 *** StratifiedShuffleSplit
如考虑分层抽样,例如对收入中位数分层抽样(收入中位数对房屋价格比较重要属性)
对中位数分层,ceil取整,得到离散类别。大于5合并为5
housing[‘income_cat’]=np.ceil(housing[‘median_income’]/1.5)
housing[‘income_cat’].where(housing[‘income_cat’]<5,5.0,inplace=True)
使用sklearn StratifiedShuffleSplit***
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1,test_size=0.2,random_state=42)
for train_index , test_index in split.split(housing,housing[‘income_cat’]):
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]

def income_cat_proportions(data):
return data[“income_cat”].value_counts() / len(data)

train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)
验证分层抽样
compare_props = pd.DataFrame({
“Overall”: income_cat_proportions(housing),
“Stratified”: income_cat_proportions(strat_test_set),
“Random”: income_cat_proportions(test_set),
}).sort_index()
compare_props[“Rand. %error”] = 100 * compare_props[“Random”] / compare_props[“Overall”] - 100
compare_props[“Strat. %error”] = 100 * compare_props[“Stratified”] / compare_props[“Overall”] - 100
drop [‘income_cat’] column
for set_ in (strat_train_set, strat_test_set):
set_.drop(“income_cat”, axis=1, inplace=True)
使用图表查看相关性longitude and latitude
housing.plot(kind=‘scatter’,x=‘longitude’,y=‘latitude’,alpha=0.1)
加入颜色
housing.plot(kind=“scatter”, x=“longitude”, y=“latitude”, alpha=0.4,
s=housing[“population”]/100, label=“population”, figsize=(10,7),
c=“median_house_value”, cmap=plt.get_cmap(“jet”), colorbar=True,
sharex=False)
plt.legend()
寻找相关性

1.方法1 corr

corr_matrix = housing.corr()
corr_matrix[‘median_house_value’].sort_values(ascending=False)

  1. 方法2 scatter_matrix

from pandas.plotting import scatter_matrix

attribues = [‘median_house_value’,‘median_income’,‘total_rooms’,‘housing_median_age’]
scatter_matrix(housing[attribues],figsize=(12,8))
/
housing.plot(kind=‘scatter’,x=‘median_income’,y=‘median_house_value’,alpha=0.1)

数据分成label和data
housing = strat_train_set.drop(“median_house_value”, axis=1) # drop labels for training set
housing_labels = strat_train_set[“median_house_value”].copy()
查找null数据
sample_incomplete_rows = housing[housing.isnull().any(axis=1)].head()
sample_incomplete_rows

imputer方法填充
from sklearn.preprocessing import Imputer
imputer = Imputer(strategy=“median”)
housing_num = housing.drop(“ocean_proximity”, axis=1)# drop离散数据列
imputer.fit(housing_num)
imputer.statistics_
housing_num.median().values
X = imputer.transform(housing_num) //X is arry
housing_tr = pd.DataFrame(X, columns=housing_num.columns,
index = list(housing.index.values)) //conver X into dataframe with housing columns and indexes.
方法一 factorize方法进行离散数据编码化
housing_cat_encoded, housing_categories = housing_cat.factorize()
print(housing_cat_encoded[:10]) # encode将离散数据编号化
print(housing_cat[:10])

**方法二 hotencoder编码化 矩阵计算
from sklearn.preprocessing import OneHotEncoder

encoder = OneHotEncoder()
housing_cat_1hot = encoder.fit_transform(housing_cat_encoded.reshape(-1,1))
housing_cat_1hot**
方法三 categoryencode

Definition of the CategoricalEncoder class, copied from PR #9151.

Just run this cell, or copy it to your code, do not try to understand it (yet).

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.utils import check_array
from sklearn.preprocessing import LabelEncoder
from scipy import sparse

class CategoricalEncoder(BaseEstimator, TransformerMixin):
“”“Encode categorical features as a numeric array.
The input to this transformer should be a matrix of integers or strings,
denoting the values taken on by categorical (discrete) features.
The features can be encoded using a one-hot aka one-of-K scheme
(encoding='onehot', the default) or converted to ordinal integers
(encoding='ordinal').
This encoding is needed for feeding categorical data to many scikit-learn
estimators, notably linear models and SVMs with the standard kernels.
Read more in the :ref:User Guide .
Parameters
----------
encoding : str, ‘onehot’, ‘onehot-dense’ or ‘ordinal’
The type of encoding to use (default is ‘onehot’):
- ‘onehot’: encode the features using a one-hot aka one-of-K scheme
(or also called ‘dummy’ encoding). This creates a binary column for
each category and returns a sparse matrix.
- ‘onehot-dense’: the same as ‘onehot’ but returns a dense array
instead of a sparse matrix.
- ‘ordinal’: encode the features as ordinal integers. This results in
a single column of integers (0 to n_categories - 1) per feature.
categories : ‘auto’ or a list of lists/arrays of values.
Categories (unique values) per feature:
- ‘auto’ : Determine categories automatically from the training data.
- list : categories[i] holds the categories expected in the ith
column. The passed categories are sorted before encoding the data
(used categories can be found in the categories_ attribute).
dtype : number type, default np.float64
Desired dtype of output.
handle_unknown : ‘error’ (default) or ‘ignore’
Whether to raise an error or ignore if a unknown categorical feature is
present during transform (default is to raise). When this is parameter
is set to ‘ignore’ and an unknown category is encountered during
transform, the resulting one-hot encoded columns for this feature
will be all zeros.
Ignoring unknown categories is not supported for
encoding='ordinal'.
Attributes
----------
categories_ : list of arrays
The categories of each feature determined during fitting. When
categories were specified manually, this holds the sorted categories
(in order corresponding with output of transform).
Examples
--------
Given a dataset with three features and two samples, we let the encoder
find the maximum value per feature and transform the data to a binary
one-hot encoding.
>>> from sklearn.preprocessing import CategoricalEncoder
>>> enc = CategoricalEncoder(handle_unknown=‘ignore’)
>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
… # doctest: +ELLIPSIS
CategoricalEncoder(categories=‘auto’, dtype=<… ‘numpy.float64’>,
encoding=‘onehot’, handle_unknown=‘ignore’)
>>> enc.transform([[0, 1, 1], [1, 0, 4]]).toarray()
array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.],
[ 0., 1., 1., 0., 0., 0., 0., 0., 0.]])
See also
--------
sklearn.preprocessing.OneHotEncoder : performs a one-hot encoding of
integer ordinal features. The OneHotEncoder assumes that input
features take on values in the range [0, max(feature)] instead of
using the unique values.
sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of
dictionary items (also handles string-valued features).
sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot
encoding of dictionary items or strings.
“””

def __init__(self, encoding='onehot', categories='auto', dtype=np.float64,
             handle_unknown='error'):
    self.encoding = encoding
    self.categories = categories
    self.dtype = dtype
    self.handle_unknown = handle_unknown

def fit(self, X, y=None):
    """Fit the CategoricalEncoder to X.
    Parameters
    ----------
    X : array-like, shape [n_samples, n_feature]
        The data to determine the categories of each feature.
    Returns
    -------
    self
    """

    if self.encoding not in ['onehot', 'onehot-dense', 'ordinal']:
        template = ("encoding should be either 'onehot', 'onehot-dense' "
                    "or 'ordinal', got %s")
        raise ValueError(template % self.handle_unknown)

    if self.handle_unknown not in ['error', 'ignore']:
        template = ("handle_unknown should be either 'error' or "
                    "'ignore', got %s")
        raise ValueError(template % self.handle_unknown)

    if self.encoding == 'ordinal' and self.handle_unknown == 'ignore':
        raise ValueError("handle_unknown='ignore' is not supported for"
                         " encoding='ordinal'")

    X = check_array(X, dtype=np.object, accept_sparse='csc', copy=True)
    n_samples, n_features = X.shape

    self._label_encoders_ = [LabelEncoder() for _ in range(n_features)]

    for i in range(n_features):
        le = self._label_encoders_[i]
        Xi = X[:, i]
        if self.categories == 'auto':
            le.fit(Xi)
        else:
            valid_mask = np.in1d(Xi, self.categories[i])
            if not np.all(valid_mask):
                if self.handle_unknown == 'error':
                    diff = np.unique(Xi[~valid_mask])
                    msg = ("Found unknown categories {0} in column {1}"
                           " during fit".format(diff, i))
                    raise ValueError(msg)
            le.classes_ = np.array(np.sort(self.categories[i]))

    self.categories_ = [le.classes_ for le in self._label_encoders_]

    return self

def transform(self, X):
    """Transform X using one-hot encoding.
    Parameters
    ----------
    X : array-like, shape [n_samples, n_features]
        The data to encode.
    Returns
    -------
    X_out : sparse matrix or a 2-d array
        Transformed input.
    """
    X = check_array(X, accept_sparse='csc', dtype=np.object, copy=True)
    n_samples, n_features = X.shape
    X_int = np.zeros_like(X, dtype=np.int)
    X_mask = np.ones_like(X, dtype=np.bool)

    for i in range(n_features):
        valid_mask = np.in1d(X[:, i], self.categories_[i])

        if not np.all(valid_mask):
            if self.handle_unknown == 'error':
                diff = np.unique(X[~valid_mask, i])
                msg = ("Found unknown categories {0} in column {1}"
                       " during transform".format(diff, i))
                raise ValueError(msg)
            else:
                # Set the problematic rows to an acceptable value and
                # continue `The rows are marked `X_mask` and will be
                # removed later.
                X_mask[:, i] = valid_mask
                X[:, i][~valid_mask] = self.categories_[i][0]
        X_int[:, i] = self._label_encoders_[i].transform(X[:, i])

    if self.encoding == 'ordinal':
        return X_int.astype(self.dtype, copy=False)

    mask = X_mask.ravel()
    n_values = [cats.shape[0] for cats in self.categories_]
    n_values = np.array([0] + n_values)
    indices = np.cumsum(n_values)

    column_indices = (X_int + indices[:-1]).ravel()[mask]
    row_indices = np.repeat(np.arange(n_samples, dtype=np.int32),
                            n_features)[mask]
    data = np.ones(n_samples * n_features)[mask]

    out = sparse.csc_matrix((data, (row_indices, column_indices)),
                            shape=(n_samples, indices[-1]),
                            dtype=self.dtype).tocsr()
    if self.encoding == 'onehot-dense':
        return out.toarray()
    else:
        return out

cat_encoder = CategoricalEncoder(encoding=“onehot-dense”)
housing_cat_1hot = cat_encoder.fit_transform(housing_cat_reshaped)
housing_cat_1hot
dataframe 和 array之间转换
attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
housing_extra_attribs = attr_adder.transform(housing.values)
housing_extra_attribs = pd.DataFrame(housing_extra_attribs, columns=list(housing.columns)+[“rooms_per_household”, “population_per_household”])
housing_extra_attribs.head()

你可能感兴趣的:(机器学习,机器学习)