nn.Sequential()

nn.Sequential()介绍

一个序列容器,用于搭建神经网络的模块被按照被传入的构造器的顺序添加到 n n . S e q u e n t i a l ( ) nn.Sequential() nn.Sequential()容器中,除此之外,一个包含神经网络模块的 O r d e r e d D i c t OrderedDict OrderedDict也可以传入到 n n . S e q u e n t i a l ( ) nn.Sequential() nn.Sequential()容器中,利用 n n . S e q u e n t i a l ( ) nn.Sequential() nn.Sequential()搭建好的网络架构,模型前向传播时调用 f o r w a r d ( ) forward() forward()方法,模型接收的输入首先被传入nn.Sequential()包含的第一个网络模块中.然后第一个网络模块的输出被传入第二个网络模块作为输入,按照顺序依次计算并传播,直到nn.Sequential()里的最后一个模块输出结果。

举例

# Using Sequential to create a small model. When `model` is run,
# input will first be passed to `Conv2d(1,20,5)`. The output of
# `Conv2d(1,20,5)` will be used as the input to the first
# `ReLU`; the output of the first `ReLU` will become the input
# for `Conv2d(20,64,5)`. Finally, the output of
# `Conv2d(20,64,5)` will be used as input to the second `ReLU`
model = nn.Sequential(
          nn.Conv2d(1,20,5),
          nn.ReLU(),
          nn.Conv2d(20,64,5),
          nn.ReLU()
        )

# Using Sequential with OrderedDict. This is functionally the
# same as the above code
model = nn.Sequential(OrderedDict([
          ('conv1', nn.Conv2d(1,20,5)),
          ('relu1', nn.ReLU()),
          ('conv2', nn.Conv2d(20,64,5)),
          ('relu2', nn.ReLU())
        ]))

nn.Sequential()的本质作用

按照上面的说法,与一层一层单独调用模块组成序列相比, n n . S e q u e n t i a l nn.Sequential nn.Sequential可以允许将整个容器视为单个模块,(即相当于把多个模块封装成一个模块), f o r w a r d ( ) forward() forward()接收输入之后, n n . S e q u e n t i a l ( ) nn.Sequential() nn.Sequential()按照**内部模块的顺序自动依次计算并输出结果
**。
这就意味着我们可以利用nn.Sequential() 自定义自己的网络层。

from torch import nn


class net(nn.Module):
    def __init__(self, in_channel, out_channel):
        super(net, self).__init__()
        self.layer1 = nn.Sequential(nn.Conv2d(in_channel, in_channel / 4, kernel_size=1),
                                    nn.BatchNorm2d(in_channel / 4),
                                    nn.ReLU())
        self.layer2 = nn.Sequential(nn.Conv2d(in_channel / 4, in_channel / 4),
                                    nn.BatchNorm2d(in_channel / 4),
                                    nn.ReLU())
        self.layer3 = nn.Sequential(nn.Conv2d(in_channel / 4, out_channel, kernel_size=1),
                                    nn.BatchNorm2d(out_channel),
                                    nn.ReLU())
        
    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        
        return x

上边的代码,我们通过nn.Sequential()将卷积层,BN层和激活函数层封装在一个层中,输入x经过卷积、BN和ReLU后直接输出激活函数作用之后的结果。

  • n n . S e q u e n t i a l ( ) nn.Sequential() nn.Sequential()``和 t o r c h . n n . M o d u l e L i s t torch.nn.ModuleList torch.nn.ModuleList区别在于torch.nn.ModuleList只时一个储存网络模块的 l i s t list list,其中的网络模块之间没有连接关系和顺序关系,而nn.Sequential()内的网络模块之间是按照添加的顺序级联的。
  • nn.Sequential源码

def __init__(self, *args):
        super(Sequential, self).__init__()
        if len(args) == 1 and isinstance(args[0], OrderedDict):
            for key, module in args[0].items():
                self.add_module(key, module)
        else:
            for idx, module in enumerate(args):
                self.add_module(str(idx), module)

n n . S e q u e n t i a l nn.Sequential nn.Sequential首先判断接收的参数是否为 O r d e r e d D i c t OrderedDict OrderedDict类型,如果是的话,分别取出OrderedDict内每个元素的key(自定义的网络模块名)和value(网络模块),然后将其通过add_module方法添加到nn.Sequrntial()中。

    # NB: We can't really type check this function as the type of input
    # may change dynamically (as is tested in
    # TestScript.test_sequential_intermediary_types).  Cannot annotate
    # with Any as TorchScript expects a more precise type
    def forward(self, input):
        for module in self:
            input = module(input)
        return input

调用 f o r w a r d ( ) forward() forward()方法,进行前向传播时, f o r for for循环按照顺序遍历,nn.Sequential()中存储的网络模块,并以此计算输出结果,并返回最终的计算结果。

总结

会自己总结各个模块的用处,然后会建立自己的网络架构,了解自己的代码产生能力。

你可能感兴趣的:(Torch的使用及参数解释,python,深度学习,人工智能)