论文地址:https://arxiv.org/abs/1911.11907
代码地址:https://github.com/huawei-noah/ghostnet
由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络(CNN)很困难。特征图中的冗余是那些成功的神经网络的重要特征,但在神经架构设计中很少研究。本文提出了一种新的Ghost模块,以从廉价的操作中生成更多的特征图。基于一组内在特征图,我们以低成本应用一系列线性变换来生成许多重影特征图,这些重影特征可以充分揭示内在特征的信息。所提出的Ghost模块可以作为即插即用组件来升级现有的卷积神经网络。Ghost瓶颈被设计为堆叠Ghost模块,然后可以轻松地建立轻量级GhostNet。在基准上进行的实验表明,所提出的Ghost模块是基线模型中卷积层的一个令人印象深刻的替代方案,并且我们的GhostNet可以在ImageNet ILSVRC2012分类数据集上以类似的计算成本实现比MobileNetV3更高的识别性能(例如,75.7%的前1精度)。代码可从https://github.com/huawei-noah/ghostnet获取。
yolov5lGhost.yaml
# YOLOv5 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# Ghostnet backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [16, 3, 2, 1]], # 0-P1/2 ch_out, kernel, stride, padding, groups
[-1, 1, G_bneck, [16, 16, 3, 1]], # 1 ch_out, ch_mid, dw-kernel, stride
[-1, 1, G_bneck, [24, 48, 3, 2]], # 2-P2/4
[-1, 1, G_bneck, [24, 72, 3, 1]], # 3
[-1, 1, G_bneck, [40, 72, 3, 2, True]], # 4-P3/8
[-1, 1, G_bneck, [40, 120, 3, 1, True]], # 5
[-1, 1, G_bneck, [80, 240, 3, 2]], # 6-P4/16
[-1, 3, G_bneck, [80, 184, 3, 1]], # 7
[-1, 1, G_bneck, [112, 480, 3, 1, True]],
[-1, 1, G_bneck, [112, 480, 3, 1, True]],
[-1, 1, G_bneck, [160, 672, 3, 2, True]], # 10-P5/32
[-1, 1, G_bneck, [160, 960, 3, 1]], # 11
[-1, 1, G_bneck, [160, 960, 3, 1, True]],
[-1, 1, G_bneck, [160, 960, 3, 1]],
[-1, 1, G_bneck, [160, 960, 3, 1, True]],
[-1, 1, Conv, [960]],
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 9], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 20
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 5], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 24 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 20], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 27 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 16], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 30 (P5/32-large)
[[23, 26, 29], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
common.py中加入以下代码:
class SeBlock(nn.Module):
def __init__(self, in_channel, reduction=4):
super().__init__()
self.Squeeze = nn.AdaptiveAvgPool2d(1)
self.Excitation = nn.Sequential()
self.Excitation.add_module('FC1', nn.Conv2d(in_channel, in_channel // reduction, kernel_size=1)) # 1*1卷积与此效果相同
self.Excitation.add_module('ReLU', nn.ReLU())
self.Excitation.add_module('FC2', nn.Conv2d(in_channel // reduction, in_channel, kernel_size=1))
self.Excitation.add_module('Sigmoid', nn.Sigmoid())
def forward(self, x):
y = self.Squeeze(x)
ouput = self.Excitation(y)
return x * (ouput.expand_as(x))
class G_bneck(nn.Module):
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
def __init__(self, c1, c2, midc, k=5, s=1, use_se = False): # ch_in, ch_mid, ch_out, kernel, stride, use_se
super().__init__()
assert s in [1, 2]
c_ = midc
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # Expansion
Conv(c_, c_, 3, s=2, p=1, g=c_, act=False) if s == 2 else nn.Identity(), # dw
# Squeeze-and-Excite
SeBlock(c_) if use_se else nn.Sequential(),
GhostConv(c_, c2, 1, 1, act=False)) # Squeeze pw-linear
self.shortcut = nn.Identity() if (c1 == c2 and s == 1) else \
nn.Sequential(Conv(c1, c1, 3, s=s, p=1, g=c1, act=False), \
Conv(c1, c2, 1, 1, act=False)) # 避免stride=2时 通道数改变的情况
def forward(self, x):
# print(self.conv(x).shape)
# print(self.shortcut(x).shape)
return self.conv(x) + self.shortcut(x)
手把手带你调参Yolo v5 (v6.2)(推理)强烈推荐
手把手带你调参Yolo v5 (v6.2)(训练)
手把手带你调参Yolo v5 (v6.2)(验证)
如何快速使用自己的数据集训练Yolov5模型
手把手带你Yolov5 (v6.2)添加注意力机制(一)(并附上30多种顶会Attention原理图)强烈推荐新增8种
手把手带你Yolov5 (v6.2)添加注意力机制(二)(在C3模块中加入注意力机制)
Yolov5如何更换激活函数?
Yolov5如何更换BiFPN?
Yolov5 (v6.2)数据增强方式解析
Yolov5更换上采样方式( 最近邻 / 双线性 / 双立方 / 三线性 / 转置卷积)
Yolov5如何更换EIOU / alpha IOU / SIoU?
Yolov5更换主干网络之《旷视轻量化卷积神经网络ShuffleNetv2》
YOLOv5应用轻量级通用上采样算子CARAFE
空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC
用于低分辨率图像和小物体的模块SPD-Conv
GSConv+Slim-neck 减轻模型的复杂度同时提升精度
头部解耦 | 将YOLOX解耦头添加到YOLOv5 | 涨点杀器
Stand-Alone Self-Attention | 搭建纯注意力FPN+PAN结构
YOLOv5模型剪枝实战
YOLOv5知识蒸馏实战
YOLOv7知识蒸馏实战
改进YOLOv5 | 引入密集连接卷积网络DenseNet思想 | 搭建密集连接模块
YOLOv5更换骨干网络之 PP-LCNet
YOLOv5更换骨干网络之 EfficientNet-B0
YOLOv5 框架引入 Google 轻量化网络 MobileNet V3
https://github.com/Gumpest/YOLOv5-Multibackbone-Compression