import os
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch_geometric.datasets import Planetoid
import torch_geometric.nn as pyg_nn
import torch_geometric.transforms as T
def get_data(folder="node_classify/cora", data_name="cora"):
dataset = Planetoid(root=folder, name=data_name,
transform=T.NormalizeFeatures())
return dataset
class GraphCNN(nn.Module):
def __init__(self, in_c, hid_c, out_c):
super(GraphCNN, self).__init__()
self.conv1 = pyg_nn.GCNConv(in_channels=in_c, out_channels=hid_c)
self.conv2 = pyg_nn.GCNConv(in_channels=hid_c, out_channels=out_c)
def forward(self, data):
x = data.x
edge_index = data.edge_index
hid = self.conv1(x=x, edge_index=edge_index)
hid = F.relu(hid)
out = self.conv2(x=hid, edge_index=edge_index)
out = F.log_softmax(out, dim=1)
return out
class OwnGCN(nn.Module):
def __init__(self, in_c, hid_c, out_c):
super(OwnGCN, self).__init__()
self.in_ = pyg_nn.SGConv(in_c, hid_c, K=2)
self.conv1 = pyg_nn.APPNP(K=2, alpha=0.1)
self.conv2 = pyg_nn.APPNP(K=2, alpha=0.1)
self.out_ = pyg_nn.SGConv(hid_c, out_c, K=2)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.in_(x, edge_index)
x = F.dropout(x, p=0.1, training=self.training)
x = F.relu(self.conv1(x, edge_index))
x = F.dropout(x, p=0.1, training=self.training)
x = F.relu(self.conv2(x, edge_index))
x = F.dropout(x, p=0.1, training=self.training)
x = self.out_(x, edge_index)
return F.log_softmax(x, dim=1)
class YourOwnGCN(nn.Module):
pass
def analysis_data(dataset):
print("Basic Info: ", dataset[0])
print("# Nodes: ", dataset[0].num_nodes)
print("# Features: ", dataset[0].num_features)
print("# Edges: ", dataset[0].num_edges)
print("# Classes: ", dataset.num_classes)
print("# Train samples: ", dataset[0].train_mask.sum().item())
print("# Valid samples: ", dataset[0].val_mask.sum().item())
print("# Test samples: ", dataset[0].test_mask.sum().item())
print("Undirected: ", dataset[0].is_undirected())
def main():
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
cora_dataset = get_data()
my_net = OwnGCN(in_c=cora_dataset.num_features, hid_c=300, out_c=cora_dataset.num_classes)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
my_net = my_net.to(device)
data = cora_dataset[0].to(device)
optimizer = torch.optim.Adam(my_net.parameters(), lr=1e-2, weight_decay=1e-3)
"""
# model train
my_net.train()
for epoch in range(500):
optimizer.zero_grad()
output = my_net(data)
loss = F.nll_loss(output[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
_, prediction = output.max(dim=1)
valid_correct = prediction[data.val_mask].eq(data.y[data.val_mask]).sum().item()
valid_number = data.val_mask.sum().item()
valid_acc = valid_correct / valid_number
print("Epoch: {:03d}".format(epoch + 1), "Loss: {:.04f}".format(loss.item()),
"Valid Accuracy:: {:.4f}".format(valid_acc))
"""
my_net = torch.load("node_classify/best.pth")
my_net.eval()
_, prediction = my_net(data).max(dim=1)
target = data.y
test_correct = prediction[data.test_mask].eq(target[data.test_mask]).sum().item()
test_number = data.test_mask.sum().item()
train_correct = prediction[data.train_mask].eq(target[data.train_mask]).sum().item()
train_number = data.train_mask.sum().item()
print("==" * 20)
print("Accuracy of Train Samples: {:.04f}".format(train_correct / train_number))
print("Accuracy of Test Samples: {:.04f}".format(test_correct / test_number))
def test_main():
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cora_dataset = get_data()
data = cora_dataset[0].to(device)
my_net = torch.load("node_classify/best.pth")
my_net.eval()
_, prediction = my_net(data).max(dim=1)
target = data.y
test_correct = prediction[data.test_mask].eq(target[data.test_mask]).sum().item()
test_number = data.test_mask.sum().item()
train_correct = prediction[data.train_mask].eq(target[data.train_mask]).sum().item()
train_number = data.train_mask.sum().item()
print("==" * 20)
print("Accuracy of Train Samples: {:.04f}".format(train_correct / train_number))
print("Accuracy of Test Samples: {:.04f}".format(test_correct / test_number))
if __name__ == '__main__':
test_main()