ros tf坐标

参考:

  • 讲解:https://www.bilibili.com/video/BV1zt411G7Vn/?p=18&vd_source=3a1ad336af3eaae4fcced56c75d309d1
  • ROS程序:https://gitee.com/guyuehome/ros_21_tutorials/tree/master/learning_tf
  • ROS2程序:https://gitee.com/guyuehome/ros2_21_tutorials/tree/master/learning_tf
  • 将点云从相机坐标系转到世界坐标系:https://blog.csdn.net/a17381562089/article/details/115127318
  • 机械臂抓取坐标转换:https://blog.csdn.net/qq_33328642/article/details/122667192
  • 具体的程序讲解:https://blog.csdn.net/qq_52785580/article/details/124673098
  • wiki官方文档的链接:https://blog.csdn.net/ZhangRelay/article/details/62052505

01 可视化

Rviz实时显示:
终端打开rviz
点击add 添加tf
可以看到实时的变化

ros tf坐标_第1张图片

TF 树:
rosrun tf view_frames
会生成pdf文件,显示坐标关系,pdf文件保存在当前终端的文件夹下


rosrun rqt_tf_tree rqt_tf_tree
在rqt中显示

命令行监听
列出tf命令行工具 rosrun tf tf_
监听 tf tf_echo

ros tf坐标_第2张图片

02 坐标变换

ros tf坐标_第3张图片

03 程序

ros tf坐标_第4张图片

3.1 坐标发布与接收

3.1.1 tf发布

① ros c++


/**
 * 发布tf
 */

#include 
#include 
#include 

std::string turtle_name;

void poseCallback(const turtlesim::PoseConstPtr& msg)
{
	// 创建tf的广播器
	static tf::TransformBroadcaster br;

	// 初始化tf数据
	tf::Transform transform;
	transform.setOrigin( tf::Vector3(msg->x, msg->y, 0.0) );
	tf::Quaternion q;
	q.setRPY(0, 0, msg->theta);
	transform.setRotation(q);

	// 广播world与海龟坐标系之间的tf数据
	br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "world", turtle_name));
}

int main(int argc, char** argv)
{
    // 初始化ROS节点
	ros::init(argc, argv, "my_tf_broadcaster");

	// 输入参数作为海龟的名字
	if (argc != 2)
	{
		ROS_ERROR("need turtle name as argument"); 
		return -1;
	}

	turtle_name = argv[1];

	// 订阅海龟的位姿话题
	ros::NodeHandle node;
	ros::Subscriber sub = node.subscribe(turtle_name+"/pose", 10, &poseCallback);

    // 循环等待回调函数
	ros::spin();

	return 0;
};

② ros python

#!/usr/bin/env python
# -*- coding: utf-8 -*-

# 该例程将请求/show_person服务,服务数据类型learning_service::Person

import roslib
roslib.load_manifest('learning_tf')
import rospy

import tf
import turtlesim.msg

def handle_turtle_pose(msg, turtlename):
    br = tf.TransformBroadcaster()
    br.sendTransform((msg.x, msg.y, 0),
                     tf.transformations.quaternion_from_euler(0, 0, msg.theta),
                     rospy.Time.now(),
                     turtlename,
                     "world")

if __name__ == '__main__':
    rospy.init_node('turtle_tf_broadcaster')
    turtlename = rospy.get_param('~turtle')
    rospy.Subscriber('/%s/pose' % turtlename,
                     turtlesim.msg.Pose,
                     handle_turtle_pose,
                     turtlename)
    rospy.spin()


③ ros2 python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

"""
 @文件名: static_tf_broadcaster.py
 @说明: 广播静态的坐标变换
"""

import rclpy                                                                 # ROS2 Python接口库
from rclpy.node import Node                                                  # ROS2 节点类
from geometry_msgs.msg import TransformStamped                               # 坐标变换消息
import tf_transformations                                                    # TF坐标变换库
from tf2_ros.static_transform_broadcaster import StaticTransformBroadcaster  # TF静态坐标系广播器类

class StaticTFBroadcaster(Node):
    def __init__(self, name):
        super().__init__(name)                                                  # ROS2节点父类初始化
        self.tf_broadcaster = StaticTransformBroadcaster(self)                  # 创建一个TF广播器对象

        static_transformStamped = TransformStamped()                            # 创建一个坐标变换的消息对象
        static_transformStamped.header.stamp = self.get_clock().now().to_msg()  # 设置坐标变换消息的时间戳
        static_transformStamped.header.frame_id = 'world'                       # 设置一个坐标变换的源坐标系
        static_transformStamped.child_frame_id  = 'house'                       # 设置一个坐标变换的目标坐标系
        static_transformStamped.transform.translation.x = 10.0                  # 设置坐标变换中的X、Y、Z向的平移
        static_transformStamped.transform.translation.y = 5.0                    
        static_transformStamped.transform.translation.z = 0.0
        quat = tf_transformations.quaternion_from_euler(0.0, 0.0, 0.0)          # 将欧拉角转换为四元数(roll, pitch, yaw)
        static_transformStamped.transform.rotation.x = quat[0]                  # 设置坐标变换中的X、Y、Z向的旋转(四元数)
        static_transformStamped.transform.rotation.y = quat[1]
        static_transformStamped.transform.rotation.z = quat[2]
        static_transformStamped.transform.rotation.w = quat[3]

        self.tf_broadcaster.sendTransform(static_transformStamped)              # 广播静态坐标变换,广播后两个坐标系的位置关系保持不变

def main(args=None):
    rclpy.init(args=args)                                # ROS2 Python接口初始化
    node = StaticTFBroadcaster("static_tf_broadcaster")  # 创建ROS2节点对象并进行初始化
    rclpy.spin(node)                                     # 循环等待ROS2退出
    node.destroy_node()                                  # 销毁节点对象
    rclpy.shutdown()

2.1.2 tf监听

① ros c++

/**
 * 监听tf数据,并计算、发布turtle2的速度指令
 */

#include 
#include 
#include 
#include 

int main(int argc, char** argv)
{
	// 初始化ROS节点
	ros::init(argc, argv, "my_tf_listener");

    // 创建节点句柄
	ros::NodeHandle node;

	// 请求产生turtle2
	ros::service::waitForService("/spawn");
	ros::ServiceClient add_turtle = node.serviceClient<turtlesim::Spawn>("/spawn");
	turtlesim::Spawn srv;
	add_turtle.call(srv);

	// 创建发布turtle2速度控制指令的发布者
	ros::Publisher turtle_vel = node.advertise<geometry_msgs::Twist>("/turtle2/cmd_vel", 10);

	// 创建tf的监听器
	tf::TransformListener listener;

	ros::Rate rate(10.0);
	while (node.ok())
	{
		// 获取turtle1与turtle2坐标系之间的tf数据
		tf::StampedTransform transform;
		try
		{
			listener.waitForTransform("/turtle2", "/turtle1", ros::Time(0), ros::Duration(3.0));
			listener.lookupTransform("/turtle2", "/turtle1", ros::Time(0), transform);
		}
		catch (tf::TransformException &ex) 
		{
			ROS_ERROR("%s",ex.what());
			ros::Duration(1.0).sleep();
			continue;
		}

		// 根据turtle1与turtle2坐标系之间的位置关系,发布turtle2的速度控制指令
		geometry_msgs::Twist vel_msg;
		vel_msg.angular.z = 4.0 * atan2(transform.getOrigin().y(),
				                        transform.getOrigin().x());
		vel_msg.linear.x = 0.5 * sqrt(pow(transform.getOrigin().x(), 2) +
				                      pow(transform.getOrigin().y(), 2));
		turtle_vel.publish(vel_msg);

		rate.sleep();
	}
	return 0;
};

② ros python

#!/usr/bin/env python
# -*- coding: utf-8 -*-



# 该例程将请求/show_person服务,服务数据类型learning_service::Person

import roslib
roslib.load_manifest('learning_tf')
import rospy
import math
import tf
import geometry_msgs.msg
import turtlesim.srv

if __name__ == '__main__':
    rospy.init_node('turtle_tf_listener')

    listener = tf.TransformListener()

    rospy.wait_for_service('spawn')
    spawner = rospy.ServiceProxy('spawn', turtlesim.srv.Spawn)
    spawner(4, 2, 0, 'turtle2')

    turtle_vel = rospy.Publisher('turtle2/cmd_vel', geometry_msgs.msg.Twist,queue_size=1)

    rate = rospy.Rate(10.0)
    while not rospy.is_shutdown():
        try:
            (trans,rot) = listener.lookupTransform('/turtle2', '/turtle1', rospy.Time(0))
        except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException):
            continue

        angular = 4 * math.atan2(trans[1], trans[0])
        linear = 0.5 * math.sqrt(trans[0] ** 2 + trans[1] ** 2)
        cmd = geometry_msgs.msg.Twist()
        cmd.linear.x = linear
        cmd.angular.z = angular
        turtle_vel.publish(cmd)

        rate.sleep()


③ ros2 python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

"""
@文件名:  tf_listener.py
@说明: 监听某两个坐标系之间的变换
"""

import rclpy                                              # ROS2 Python接口库
from rclpy.node import Node                               # ROS2 节点类
import tf_transformations                                 # TF坐标变换库
from tf2_ros import TransformException                    # TF左边变换的异常类
from tf2_ros.buffer import Buffer                         # 存储坐标变换信息的缓冲类
from tf2_ros.transform_listener import TransformListener  # 监听坐标变换的监听器类

class TFListener(Node):

    def __init__(self, name):
        super().__init__(name)                                      # ROS2节点父类初始化

        self.declare_parameter('source_frame', 'world')             # 创建一个源坐标系名的参数
        self.source_frame = self.get_parameter(                     # 优先使用外部设置的参数值,否则用默认值
            'source_frame').get_parameter_value().string_value

        self.declare_parameter('target_frame', 'house')             # 创建一个目标坐标系名的参数
        self.target_frame = self.get_parameter(                     # 优先使用外部设置的参数值,否则用默认值
            'target_frame').get_parameter_value().string_value

        self.tf_buffer = Buffer()                                   # 创建保存坐标变换信息的缓冲区
        self.tf_listener = TransformListener(self.tf_buffer, self)  # 创建坐标变换的监听器

        self.timer = self.create_timer(1.0, self.on_timer)          # 创建一个固定周期的定时器,处理坐标信息

    def on_timer(self):
        try:
            now = rclpy.time.Time()                                 # 获取ROS系统的当前时间
            trans = self.tf_buffer.lookup_transform(                # 监听当前时刻源坐标系到目标坐标系的坐标变换
                self.target_frame,
                self.source_frame,
                now)
        except TransformException as ex:                            # 如果坐标变换获取失败,进入异常报告
            self.get_logger().info(
                f'Could not transform {self.target_frame} to {self.source_frame}: {ex}')
            return
        
        pos  = trans.transform.translation                          # 获取位置信息
        quat = trans.transform.rotation                             # 获取姿态信息(四元数)
        euler = tf_transformations.euler_from_quaternion([quat.x, quat.y, quat.z, quat.w])
        self.get_logger().info('Get %s --> %s transform: [%f, %f, %f] [%f, %f, %f]' 
          % (self.source_frame, self.target_frame, pos.x, pos.y, pos.z, euler[0], euler[1], euler[2]))

def main(args=None):
    rclpy.init(args=args)                       # ROS2 Python接口初始化
    node = TFListener("tf_listener")            # 创建ROS2节点对象并进行初始化
    rclpy.spin(node)                            # 循环等待ROS2退出
    node.destroy_node()                         # 销毁节点对象
    rclpy.shutdown()                            # 关闭ROS2 Python接口

04 动态与静态坐标变换程序注意

  • 过程和讲解参考这篇(这个写的很好,需要多参考——ROS中动态坐标变换(动态参数调节+动态坐标变换):https://blog.csdn.net/weixin_45590473/article/details/122912545
  • 总结参考这篇——二十三、TF坐标变换(三):动态坐标变换:https://blog.csdn.net/qq_43280851/article/details/125733199

总结:
主要是时间戳

  • 静态坐标变换中,
    坐标系的相对关系不变,所以时间戳时间既可以是当前的,也可以忽略时间戳,格式如下:

    C++: 下列三种都可以

    • tfs.header.stamp = ros::Time::now();
    • tfs.header.stamp = ros::Time(0.0);
    • tfs.header.stamp = ros::Time();

    Python: 下列两种都可以

    • point_source.header.stamp = rospy.Time.now()
    • point_source.header.stamp = rospy.Time()
  • 动态坐标变换中,
    ROS系统会根据时间戳进行坐标系和坐标点的匹配,来保证坐标变换的准确性,当时间戳相差较大时,就会报错。
    由于存放坐标关系的buffer时间和坐标点的时间戳一个在循环外,一个在循环内,时间相差较大,所以系统会报错。
    虽然buffer的时间戳一直不变,但是其内容是一直变得,在一直更新,所以,如果忽略时间戳,并不会影响转换精度,因此,在动态坐标变换中(有循环),每次循环必须更新订阅端的无效时间戳(注意不是没有时间戳啦!),格式如下:

    C++: 下列两种都可以

    • tfs.header.stamp = ros::Time(0.0);
    • tfs.header.stamp = ros::Time();

    Python:

    • point_source.header.stamp = rospy.Time()

你可能感兴趣的:(ROS机器人操作系统,ros)