- Python预训练模型实现俄语音频转文字
啥都鼓捣的小yao
人工智能python音视频人工智能
Python预训练模型实现俄语音频转文字使用CommonVoice8.0、Golos和MultilingualTEDx的训练和验证分割对俄语的facebook/wav2vec2-xls-r-1b进行了微调。使用此模型时,请确保您的语音输入以16kHz采样。我们只需要装好三个功能包,写好你的文件路径即可使用!importtorchimportlibrosafromtransformersimport
- 逐行讲解大模型解码超参数大全(temperature、top-k、top-p等所有参数)
Gaffey大杂烩
大模型机器学习人工智能
目录简介宏观概览解码策略实现逻辑常见的解码超参数temperature温度系数top_ktop_prepetition_penalty重复惩罚不常见的解码超参数min_ptypical解码ϵ采样η采样Classifier-FreeGuidance(CFG)序列偏置干预HammingDiversity编码器重复惩罚n-gram重复惩罚编码器n-gram重复惩罚bad_token惩罚最小长度限制最小新
- 关于离子滤波小记
文弱_书生
乱七八糟人工智能计算机视觉算法
粒子滤波(ParticleFilter,PF)粒子滤波是一种基于蒙特卡洛方法的贝叶斯滤波算法,主要用于解决非线性、非高斯的状态估计问题。它广泛应用于机器人定位、目标跟踪、金融建模等领域。1.粒子滤波的基本概念粒子滤波的核心思想是用一组加权的**随机样本(粒子)**来近似后验概率分布,而非采用卡尔曼滤波那样的参数化分布假设(如高斯分布)。设系统的状态模型如下:xk=f(xk−1,uk,wk)x_k=
- Zynq PS端外设之IIC
Mazy.v
fpga开发
IIC协议高电平采样:时序电路的信号采样一般靠的是时钟上升沿采样,而IIC协议则是靠高电平采样。读写数据帧ZynqPS的IIC外设1.PS的I2C0I2C0的引脚既可以使用MIO,也可以使用EMIO。为了方便起见,可以直接OpenElaboratedDesign对EMIO进行管脚约束。2.SDK开发//iic用到的头文件#include"xiicps.h"#include"xparameters.
- S32K144外设实验(三):ADC单通道连续采样(中断)
上层精灵的赞美诗
#S32K144的外设基础实验单片机stm32嵌入式硬件eclipsemcu笔记
这次的实验比较简单,主要目的就是验证一下ADC的中断功能,思路是使用软件触发ADC的连续单通道采样,将采样值通过串口发送到上位机观察数是否正确。其实官方并不推荐使用中断的方式,这种方式会占用大量的CPU资源,笔者安排这篇文章的主要目的是在使用ADC中断的时候发现了个容易忽略的问题,如下图:笔者配置了ADC通道12的连续转换并使能了通道中断,关键的点就在中断这里,通过查看SDK中的代码发现,配置后的
- A/B测试结果置信度不足时如何决策
测试工具
在A/B测试结果置信度不足时,我们需要综合采用多种策略来做出明智决策。增加样本量、延长测试周期、结合实际业务场景、多指标综合评估。其中,增加样本量尤为关键,因为样本量不足往往导致数据波动较大,易产生假阳性或假阴性,从而使测试结论失去可靠性。通过优化采样策略和科学分配资源,能够有效提升测试数据的稳定性和可信度,为后续决策提供更为坚实的数据支撑。一、A/B测试原理与背景、测试信度的重要性A/B测试作为
- 集成学习(Ensemble Learning)基础知识1
代码骑士
#机器学习集成学习机器学习人工智能
文章目录一、集成学习1、基本概念2、回顾:误差的偏差-方差分解3、为什么集成学习有效?4、基学习器:“好而不同”5、集成学习的两个基本问题(1)如何训练出具有差异性的多个基学习器?(2)如何将多个基学习器的预测结果集成为最终的强学习器预测结果?二、自助法(Bagging)1、Bagging2、BootstrapBootstrap采样的数学性质3、Bagging:集成学习的两个基本问题(1)如何训练
- SMOTE算法的改进与扩展
Java 第一深情
不平衡数据分类机器学习人工智能
一、SMOTE的改进算法1、Boderline-SMOTE只考虑分布在分类边界附近的少数类样本,并将其作为根样本首先通过k-NN方法将原始数据中的少数类样本划分成“Safe”、“Danger”和“Noise”3类,其中“Danger”类样本是指靠近分类边界的样本。对属于“Danger”类少数类样本进行过采样,可增加用于确定分类边界的少数类样本。这样做可以增加这些关键区域的少数类样本数量,使得模型在
- DMA的工作模式详解
浩瀚之水_csdn
#嵌入式高速总线研究DMA
DMA(直接内存访问)通过不同的工作模式管理数据传输过程,以适应各种应用场景的需求。以下是其核心工作模式及特点:1.单次传输模式(SingleTransferMode)特点:每次传输仅完成指定数据量的搬运(如1024字节),完成后自动停止。需要CPU重新配置并启动下一次传输。适用场景:非连续或一次性数据传输(如文件单次读写、传感器单次采样)。示例配置(STM32):hdma.Init.Mode=D
- S32K144外设实验(二):ADC单通道单次采样(软件触发)
上层精灵的赞美诗
#S32K144的外设基础实验单片机嵌入式硬件eclipsemcu笔记
文章目录1.概述1.1理论回顾1.1.1时钟系统1.1.2采样通道1.2实验目的2.配置与代码编写1.概述1.1理论回顾S32K144的ADC应该说是特别灵活,笔者采用循序渐进的方式来学习使用这个很重要的外设。在《入门笔记系列》专栏中对用户手册进行了翻译和解读,这里在回顾一下ADC的基本功能,第一次实验我们不使用过于复杂的触发方式。只使用一个通道来理解S32K144的ADC。1.1.1时钟系统首先
- 3DMAX点云算法:实现毫米级BIM模型偏差检测(附完整代码)
夏末之花
人工智能
摘要本文基于激光雷达点云数据与BIM模型的高精度对齐技术,提出一种融合动态体素化与多模态特征匹配的偏差检测方法。通过点云预处理、语义分割、模型配准及差异分析,最终实现建筑构件毫米级偏差的可视化检测。文中提供关键代码实现,涵盖点云处理、特征提取与深度学习模型搭建。一、核心算法流程点云预处理与特征增强去噪与下采样:采用统计滤波与体素网格下采样,去除离群点并降低数据量。语义分割:基于PointNet++
- 【论文精读】SCINet-基于降采样和交互学习的时序卷积模型
打酱油的葫芦娃
时序预测算法时序预测SCINetTCN
《SCINet:TimeSeriesModelingandForecastingwithSampleConvolutionandInteraction》的作者团队来自香港中文大学,发表在NeurIPS2022会议上。动机该论文的出发点是观察到时间序列数据具有独特的属性:即使在将时间序列下采样成两个子序列后,时间关系(例如数据的趋势和季节性成分)也基本上得以保留。这个观察启发了作者去设计一种新型的神
- 深度学习五大模型:CNN、Transformer、BERT、RNN、GAN详细解析
深度学习
卷积神经网络(ConvolutionalNeuralNetwork,CNN)原理:CNN主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在输入数据上进行卷积运算,提取局部特征;池化层则对特征图进行下采样,降低特征维度,同时保留主要特征;全连接层将特征图展开为一维向量,并进行分类或回归计算。CNN利用卷积操作实现局部连接和权重共享,能够自动学习数据中的空间特征。适用场景:广泛应用于图像处理相关的
- 大语言模型的训练数据清洗策略
gs80140
AIpython
目录大语言模型的训练数据清洗策略1.数据去重与标准化问题解决方案示例代码(Python实现数据去重):2.过滤有害内容问题解决方案示例代码(基于关键词过滤有害内容):3.纠正数据不均衡问题解决方案示例代码(欠采样非均衡数据):4.识别和纠正刻板印象问题解决方案示例代码(简单的数据增强):5.处理低质量与无关数据问题解决方案示例代码(去除HTML标签):6.处理时效性数据问题解决方案示例代码(基于时
- 23章12节:抽样的蒙特卡洛方法
DAT|R科学与人工智能
用R探索医药数据科学r-4.2.1开发语言数据库人工智能r
蒙特卡洛方法作为一种基于随机抽样的数值计算技术,在工程、金融、统计、物理等众多领域中得到了广泛应用。该方法通过对大量随机数的模拟,来解决那些难以解析求解的问题。在实际问题中,常常需要从一个复杂分布中抽取样本,而传统的直接抽样方法可能难以实现。为了解决这一问题,接受‐拒绝抽样方法应运而生。本文旨在介绍如何利用R语言实现蒙特卡洛方法,特别是如何通过接受‐拒绝抽样从已知分布中抽取样本。文章以参数为(3,
- 论文阅读:Deep Stacked Hierarchical Multi-patch Network for Image Deblurring
行走的歌
文献阅读图像处理计算机视觉机器学习深度学习图像去雨图像处理
这是一篇去模糊的文章,后来发现直接套用不合适,无法获取到相应的特征,遂作罢,简单记录一下。2019CVPR:DMPHN这篇文章是2019CVPR的一篇去模糊方向的文章,师兄分享的时候看了一下,后来也发现这个网络结构在很多workshop以及文章中都见过。文章:ArXiv代码:Github在去模糊领域,目前的多尺度和尺度循环模型存在一些问题:1)由粗到细方案中的去卷积/上采样操作导致运行时间昂贵;2
- 麦萌短剧技术解构《我跑江湖那些年》:从“仇恨驱动型算法”到“多方安全计算的自我救赎”
短剧萌
算法安全
《我跑江湖那些年》以慕青青的复仇与蜕变为主线,展现了分布式系统中的信任崩塌与对抗性博弈的模型优化。本文将从机器学习视角拆解这场“江湖算法”的技术隐喻,探讨如何在数据污染的困境中实现参数净化。1.初始训练集:暴力采样与特征空间坍缩慕青青(Agent_M)的成长环境可视为一个高偏差训练集:数据污染事件:村主任(Node_V)通过恶意共识算法(如嫉妒驱动的PoW机制),煽动村民(Sub_Nodes)对果
- scikit-image(Scikit-image 是用于图像处理的 Python 包,使用原生的 NumPy 数组作为图像对象)
Clark-dj
图像处理pythonnumpy
Scikitimage中文开发手册-开发者手册-腾讯云开发者社区-腾讯云昨天搜索一个函数时无意间发现这个网站,今天来学习一下,仅作学习笔记。measureskimage.measure.approximate_polygon(coords,...)近似具有指定公差的多边形链。skimage.measure.block_reduce(image,block_size)通过对局部块应用函数来下采样图像
- XGBoost算法的相关知识
VariableX
机器学习基础算法机器学习
文章目录背景定义损失函数(1)原始目标函数Obj(2)原始目标函数Obj的泰勒展开(3)具体化目标函数的泰勒展开细节(4)求解目标函数中的wjw_jwj最优切分点算法基于分桶的划分策略正则化模型复杂度Shrinkage特征采样和样本采样EarlyStopping缺失值处理优缺点总结背景讲XGBoost之前,先引入一个实际问题,即预测一家人每个人玩游戏的意愿值:如果我们用XGBoost解决这个问题,
- 利用pprof对golang进行性能分析
忍界英雄
go学习笔记golang
利用pprof进行性能分析pprof性能分析的5个方面一、性能分析的五个核心维度CPU分析-剖析程序的CPU使用情况,定位高耗时函数内存分析-追踪内存分配与泄露,优化内存使用模式IO分析-监控文件/网络IO操作,发现瓶颈资源Goroutine分析-检测协程泄露与异常堆栈并发问题分析-诊断死锁及通过racedetector检测数据竞争数据采集时间生产环境采集:选择业务低峰期进行采样(凌晨2-4点)测
- 训练数据重复采样,让正负样本比例1:1
kimi-222
机器学习人工智能深度学习
详细解释resample函数:resample函数来自sklearn.utils,用于从数据集中重新抽样。replace=True表示允许重复抽样,即同一个样本可以被多次选中。n_samples指定抽样的数量。确保训练集数量相同:通过resample函数,你可以确保正训练集和负训练集的数量相同,即使其中一个集的数量小于另一个集的数量。如果n_train_num小于max_train_num,res
- 地理数据中的分辨率转换
木叶清风666
地理信息数据处理matlabpython开发语言
数据分辨率问题气象海洋数据在实际应用中,常常涉及到重采样,即分辨率的提高或降低等操作。本文提供了matlab以及python的样例程序,以降低(网格平均)或提高(线性插值)数据的分辨率。1.高分辨率——>低分辨率可以使用循环逐个网格进行操作,但循环次数过多,存在效率低下的问题。%---需要的分辨率0.25°,以及经纬度网格点deg=0.25;lat_era=16:deg:47.75;lon_era
- 一个简单的语音识别实现---百度在线语音识别REST API SDK(Python)简单使用
DerrickOzil
语音识别pythonsdk语音识别
百度在线语音识别RESTAPISDK(Python)简单使用首先申请开发者权限注册开发者信息完成注册创建新应用下载SDK并查看key在应用管理中,选择查看key,记录AppID、APIKey、SecretKey三个参数值。测试音频链接:http://pan.baidu.com/s/1o8Ue4B4密码:o5r1]注意事项音频格式限制pcm(不压缩)、wav、amr采样频率及位数支持评测8k/16k
- FFMPEG实现音频重采样
QQ_1695710968
音频重采样FFMPEGPCM
技术在于交流、沟通,转载请注明出处并保持作品的完整性。原文:https://blog.csdn.net/hiwubihe/article/details/81259134[音频编解码系列文章]音频编解码基础FFMPEG实现音频重采样FFMPEG实现PCM编码(采用封装格式实现)FFMPEG实现PCM编码(不采用封装格式实现)FAAC库实现PCM编码FAAD库实现RAW格式AAC解码FAAD库实现R
- 二.使用ffmpeg对原始音频数据重采样并进行AAC编码
djykkkkkk
ffmpeg学习ffmpeg音视频aac
重采样:将音频三元组【采样率采样格式通道数】之中的任何一个或者多个值改变。一.为什么要进行重采样?1.原始音频数据和编码器的数据格式不一致2.播放器要求的和获取的数据不一致3.方便运算二.本次编码流程1.了解自己本机麦克风参数,我的切换为44100/16/2;包括麦克风录音的size可能不一样,本机windows下录音的size为88200;1.ffmpeg获取麦克风数据2.ffmpeg对数据进行
- 一.ffmpeg打开麦克风,录制音频并重采样
djykkkkkk
ffmpeg学习ffmpeg音视频
一.windowswindows下使用msys编译ffmpeg,先编译libx264和libx265,然后编译ffmpeg的时候需要添加这两个库的路径才能--enable;为什么ffplay--enable了还是没有呢,仔细看编译打印,可能刚有一段报错提示SDL找不到,这个时候咱们就直接使用msys安装SDL,然后--enable启动sdl,这样ffplay就可以编译成功了。参考这个博主:FFmp
- 7、基于osg引擎实现读取vtk数据通过着色器实现简单体渲染(1)
不收藏找不到我
着色器着色器
1、顶点着色器代码#version110/*GLSL1.10需要显式声明精度(OpenGLES要求)*/#ifdefGL_ESprecisionhighpfloat;#endif//体数据采样步长uniformfloatxStepSize,yStepSize,zStepSize;//体数据纹理和颜色纹理uniformsampler3DbaseTexture;uniformsampler1DtfTe
- Redis缓存判断热点数据及进行数据预热的几种方式介绍
hxj..
分布式缓存redis数据库热点数据数据预热
Redis缓存如何判断热点数据?热点数据计算整体来讲就是基于访问频率,可以是整体的访问次数,可以是一定时间内的频率,可以是部分请求的采样,可以借助成熟工具等,要根据业务需求来定1.基于访问频率原理:通过统计每个键的访问频率(如每秒访问次数),识别出访问频率最高的数据。实现方法:使用Redis的INCR命令或监控工具(如RedisMonitor)统计键的访问频率。统计访问频率要确保并发场景下数据操作
- 强化学习:时间差分(TD)(SARSA算法和Q-Learning算法)(看不懂算我输专栏)——手把手教你入门强化学习(六)
wxchyy
强化学习算法
目录前言前期回顾一、SARSA算法二、Q-Learning算法三、总结总结前言 前两期我们介绍了动态规划算法,还有蒙特卡洛算法,不过它们对于状态价值函数的估值都有其缺陷性,像动态规划,需要从最下面向上进行递推,而蒙特克洛则需要一个Episode(回合)结束才能对其进行估值,有没有更直接的方法,智能体能边做动作,边估值一次,不断学习策略?答案是有的。这就是本期需要介绍的算法,时间差分法(TimeDi
- 华为OD机试 - 核酸检测人员安排 - 动态规划(Python/JS/C/C++ 2024 B卷 200分)
哪 吒
华为od动态规划python
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述在系统、网络均正常的情况下组织核酸采样员和志愿者对人群进行核酸检
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_