cs231n作业:Assignment1-KNN

note:

曼哈顿距离依赖于坐标系统的选择(向量中的元素可能都有实际的意义)
d 1 ( I 1 , I 2 ) = ∑ p ∣ I 1 p − I 2 p ∣ d_{1}(I_{1}, I_{2}) = \sum_{p}|I_{1}^{p}-I_{2}^{p}| d1(I1,I2)=pI1pI2p
欧式距离对距离的排序不会受到坐标系统的影响
d 2 ( I 1 , I 2 ) = ∑ p ( I 1 p − I 2 p ) 2 d_{2}(I_{1}, I_{2}) =\sqrt{ \sum_{p}(I_{1}^{p}-I_{2}^{p})^{2}} d2(I1,I2)=p(I1pI2p)2

超参数:我们在一个算法中的设置而不是通过算法学习得到(具体问题具体设置)

容易导致过拟合的做法:
(1)选择在测试集准确率最高的,可能导致过拟合
(2)将数据分成测试集和训练集,选择在测试集上准确率最高的分类器,这组参数可能只适合于这个测试集数据
(3)Better.将数据分成训练集,验证集,测试集。通过验证集选出超参数,用测试集评估。

交叉验证可能效果更好,但对于深度学习来说,成本太高所以不常用

KNN的弊端:
测试时间长实时性不好,
向量化的距离函数不太适合表示视觉之间的相似度,可能不适用于图像很难分清差别
纬度灾难,一旦维度上升,为了有好的训练效果 让数据分布密集(避免最近邻的点距离很远),导致训练数据可能指数倍的增长。

作业代码

from builtins import range
from builtins import object
import numpy as np
from past.builtins import xrange


class KNearestNeighbor(object):
    """ a kNN classifier with L2 distance """

    def __init__(self):
        pass

    def train(self, X, y):
        """
        Train the classifier. For k-nearest neighbors this is just
        memorizing the training data.

        Inputs:
        - X: A numpy array of shape (num_train, D) containing the training data
          consisting of num_train samples each of dimension D.
        - y: A numpy array of shape (N,) containing the training labels, where
             y[i] is the label for X[i].
        """
        self.X_train = X
        self.y_train = y

    def predict(self, X, k=1, num_loops=0):
        """
        Predict labels for test data using this classifier.

        Inputs:
        - X: A numpy array of shape (num_test, D) containing test data consisting
             of num_test samples each of dimension D.
        - k: The number of nearest neighbors that vote for the predicted labels.
        - num_loops: Determines which implementation to use to compute distances
          between training points and testing points.

        Returns:
        - y: A numpy array of shape (num_test,) containing predicted labels for the
          test data, where y[i] is the predicted label for the test point X[i].
        """
        if num_loops == 0:
            dists = self.compute_distances_no_loops(X)
        elif num_loops == 1:
            dists = self.compute_distances_one_loop(X)
        elif num_loops == 2:
            dists = self.compute_distances_two_loops(X)
        else:
            raise ValueError('Invalid value %d for num_loops' % num_loops)

        return self.predict_labels(dists, k=k)

    def compute_distances_two_loops(self, X):
        """
        Compute the distance between each test point in X and each training point
        in self.X_train using a nested loop over both the training data and the
        test data.

        Inputs:
        - X: A numpy array of shape (num_test, D) containing test data.

        Returns:
        - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
          is the Euclidean distance between the ith test point and the jth training
          point.
        """
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train))
        for i in range(num_test):
            for j in range(num_train):
                #####################################################################
                # TODO:                                                             #
                # Compute the l2 distance between the ith test point and the jth    #
                # training point, and store the result in dists[i, j]. You should   #
                # not use a loop over dimension, nor use np.linalg.norm().          #
                #####################################################################
                # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
                dists[i][j] = np.sqrt(np.sum(np.square(X[i]-self.X_train[j])))
                pass

                # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        return dists

    def compute_distances_one_loop(self, X):
        """
        Compute the distance between each test point in X and each training point
        in self.X_train using a single loop over the test data.

        Input / Output: Same as compute_distances_two_loops
        """
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train))
        for i in range(num_test):
            #######################################################################
            # TODO:                                                               #
            # Compute the l2 distance between the ith test point and all training #
            # points, and store the result in dists[i, :].                        #
            # Do not use np.linalg.norm().                                        #
            #######################################################################
            # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
            dists[i] = np.sqrt(np.sum(np.square(self.X_train - X[i]),axis=1))
            #广播机制,np会自动补全

            pass

            # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        return dists

    def compute_distances_no_loops(self, X):
        """
        Compute the distance between each test point in X and each training point
        in self.X_train using no explicit loops.

        Input / Output: Same as compute_distances_two_loops
        """
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train))
        #########################################################################
        # TODO:                                                                 #
        # Compute the l2 distance between all test points and all training      #
        # points without using any explicit loops, and store the result in      #
        # dists.                                                                #
        #                                                                       #
        # You should implement this function using only basic array operations; #
        # in particular you should not use functions from scipy,                #
        # nor use np.linalg.norm().                                             #
        #                                                                       #
        # HINT: Try to formulate the l2 distance using matrix multiplication    #
        #       and two broadcast sums.                                         #
        #########################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        x_1 = np.sum(np.multiply(X,X),axis=1,keepdims=True).reshape(num_test,1)
        y_1 = np.sum(np.multiply(self.X_train,self.X_train),axis=1,keepdims=True).reshape(1,num_train)
        xy_1 = -2 * np.dot(X,self.X_train.T)
        dists = np.sqrt(x_1 + y_1 + xy_1)

        # dists = np.multiply(np.dot(X, self.X_train.T), -2)
        # sq1 = np.sum(np.square(X), axis=1, keepdims=True)
        # sq2 = np.sum(np.square(self.X_train), axis=1)
        # dists = np.add(dists, sq1)  # python广播机制
        # dists = np.add(dists, sq2)
        # dists = np.sqrt(dists)

        pass

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        return dists

    def predict_labels(self, dists, k=1):
        """
        Given a matrix of distances between test points and training points,
        predict a label for each test point.

        Inputs:
        - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
          gives the distance betwen the ith test point and the jth training point.

        Returns:
        - y: A numpy array of shape (num_test,) containing predicted labels for the
          test data, where y[i] is the predicted label for the test point X[i].
        """
        num_test = dists.shape[0]
        y_pred = np.zeros(num_test)
        for i in range(num_test):
            # A list of length k storing the labels of the k nearest neighbors to
            # the ith test point.
            closest_y = []
            #########################################################################
            # TODO:                                                                 #
            # Use the distance matrix to find the k nearest neighbors of the ith    #
            # testing point, and use self.y_train to find the labels of these       #
            # neighbors. Store these labels in closest_y.                           #
            # Hint: Look up the function numpy.argsort.                             #
            #########################################################################
            # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
            closest_y = self.y_train[np.argsort(dists[i])]
            closest_y = closest_y[:k]


            pass

            # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
            #########################################################################
            # TODO:                                                                 #
            # Now that you have found the labels of the k nearest neighbors, you    #
            # need to find the most common label in the list closest_y of labels.   #
            # Store this label in y_pred[i]. Break ties by choosing the smaller     #
            # label.                                                                #
            #########################################################################
            # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
            y_pred[i] = np.argmax(np.bincount(closest_y))

            pass

            # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        return y_pred

num_folds = 5
k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]

X_train_folds = []
y_train_folds = []
################################################################################
# TODO:                                                                        #
# Split up the training data into folds. After splitting, X_train_folds and    #
# y_train_folds should each be lists of length num_folds, where                #
# y_train_folds[i] is the label vector for the points in X_train_folds[i].     #
# Hint: Look up the numpy array_split function.                                #
################################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
#print(X_train.shape)
x_train_folds = np.array_split(X_train,num_folds)
y_train_folds = np.array_split(y_train,num_folds)


pass

# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

# A dictionary holding the accuracies for different values of k that we find
# when running cross-validation. After running cross-validation,
# k_to_accuracies[k] should be a list of length num_folds giving the different
# accuracy values that we found when using that value of k.
k_to_accuracies = {}
classifier = KNearestNeighbor()
for i in range(len(k_choices)):
    l = []
    for j in range(num_folds):
        
        
        testx = np.array(x_train_folds[j])
        testy = np.array(y_train_folds[j])
        #交叉验证让中间一个部分当评估集
        
        trainx = x_train_folds[:j]+x_train_folds[j+1:]
        trainy = y_train_folds[:j]+y_train_folds[j+1:]
        
        trainx = np.array([y for x in trainx for y in x])
        trainy = np.array([y for x in trainy for y in x])
        #展平后作为一个整的数据集用来训练
        
        classifier.train(trainx, trainy)
        dists = classifier.compute_distances_no_loops(testx)
        
        y_test_pred = classifier.predict_labels(dists, k=k_choices[i])
        y_test_num = np.sum(y_test_pred == testy)
        
        l.append(y_test_num / len(testy))
    id = k_choices[i]
    k_to_accuracies[id] = l
        
    
    


################################################################################
# TODO:                                                                        #
# Perform k-fold cross validation to find the best value of k. For each        #
# possible value of k, run the k-nearest-neighbor algorithm num_folds times,   #
# where in each case you use all but one of the folds as training data and the #
# last fold as a validation set. Store the accuracies for all fold and all     #
# values of k in the k_to_accuracies dictionary.                               #
################################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

pass

# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

# Print out the computed accuracies
for k in sorted(k_to_accuracies):
    for accuracy in k_to_accuracies[k]:
        print('k = %d, accuracy = %f' % (k, accuracy))

numpy中keepdims的理解
np.split()与np.array_split()函数 | Numpy | Python
numpy 统计数组每一行出现次数最多的数字,np.argmax,np.bincount,np.argsort
CS231n课程学习笔记(一)——KNN的实现
cs231n作业:Assignment1-KNN
CS231n:作业1——KNN

你可能感兴趣的:(cs231n)