- 认识sm1,sm2,sm3,sm4以及如何在Node.js实现
努力学习各种软件
node.jspython爬虫
概述国密即国家密码局认定的国产密码算法。主要有SM1,SM2,SM3,SM4。密钥长度和分组长度均为128位。国密算法是指国家密码管理局认定的一系列国产密码算法,包括SM1-SM9以及ZUC等。其中SM1、SM4、SM5、SM6、SM7、SM8、ZUC等属于对称密码,SM2、SM9等属于公钥密码(非对称加密)SM3属于单向散列函数。目前我国主要使用公开的SM2、SM3、SM4作为商用密码算法。其中
- DQN的原理和代码实现
SmallerFL
NLP&机器学习DQN强化学习深度学习
文章目录1.概述2.DQN的训练步骤2.1初始化2.2训练循环2.3终止条件2.4评估3.代码示例1.概述深度Q网络(DeepQ-Network,DQN)是强化学习中的一种重要算法,由GoogleDeepMind于2013年提出。DQN结合了Q学习和深度学习,通过使用神经网络来近似Q值函数,解决了传统Q学习在高维状态空间中的问题。2.DQN的训练步骤2.1初始化环境:定义环境(例如,Atari游戏
- 排序(Sortable)
lsx202406
开发语言
排序(Sortable)引言在计算机科学和数据管理领域,排序算法是一项基本且重要的技能。排序算法能够将一组无序的数据转换为有序的数据,从而便于后续的数据处理和分析。本文将深入探讨排序算法的基本概念、常用排序方法、以及它们在实际应用中的优势与局限性。常用排序算法概述1.冒泡排序(BubbleSort)冒泡排序是一种简单的排序算法,它通过重复遍历要排序的数列,比较每对相邻元素的值,如果它们的顺序错误就
- 【python语言应用】最新全流程Python编程、机器学习与深度学习实践技术应用(帮助你快速了解和入门 Python)
赵钰老师
python机器学习深度学习python机器学习深度学习数据分析人工智能
近年来,人工智能领域的飞速发展极大地改变了各个行业的面貌。当前最新的技术动态,如大型语言模型和深度学习技术的发展,展示了深度学习和机器学习技术的强大潜力,成为推动创新和提升竞争力的关键。特别是PyTorch,凭借其灵活性和高效性,成为科研人员和工程师的首选工具。理解和掌握深度学习的基础知识,深入了解其与经典机器学习算法的区别与联系,并系统掌握包括迁移学习、循环神经网络(RNN)、长短时记忆网络(L
- 《必知!G1 堆结构全揭秘,性能优化从这里开始》
@孤随
JAVA性能优化
G1垃圾收集器原理与调优实践目录G1垃圾收集器简介核心设计原理2.1区域化堆内存布局2.2分代收集与混合GC2.3并发标记与SATB算法G1工作流程详解3.1YoungGC3.2MixedGC3.3FullGC调优参数与实战案例4.1关键JVM参数4.2电商系统调优案例4.3日志分析与工具使用避坑指南总结1.G1垃圾收集器简介G1(Garbage-First)是JDK9及以后版本的默认垃圾收集器,
- 如何利用栈和队列实现高效的计算器与任务管理系统
吴师兄大模型
数据结构python算法栈队列计算器任务管理系统
系列文章目录01-从零开始掌握Python数据结构:提升代码效率的必备技能!02-算法复杂度全解析:时间与空间复杂度优化秘籍03-线性数据结构解密:数组的定义、操作与实际应用04-深入浅出链表:Python实现与应用全面解析05-栈数据结构详解:Python实现与经典应用场景06-深入理解队列数据结构:从定义到Python实现与应用场景07-双端队列(Deque)详解:Python实现与滑动窗口应
- React的内部机制详解
GISer_Jinger
ReactJavascriptreact.js前端前端框架
用户之前询问了Vue的响应式原理,我详细介绍了Object.defineProperty和Proxy,以及发布订阅模式。现在用户转向React,可能是在比较两者,或者想深入理解React的内部机制。用户可能是前端开发者,想要更深入理解React的底层实现,以便优化应用或面试准备。我需要确保内容足够深入,覆盖React的核心机制,比如虚拟DOM、协调算法、Fiber架构、Hooks原理、事件系统等。
- python爬虫——request模块讲解,从零开始学数据结构和算法
2301_82242296
2024年程序员学习python爬虫数据结构
二、安装和基本步骤使用===========环境安装:pipinstallrequests基本步骤:.**1.导入模块:importrequests2.指定url:url=“…”3.基于requests模块发送请求:res=requests.get(url)4.获取响应对象中的数据值:print(res.‘…’)5.持久化存储(不是必须的)**三、http知识复习==========(一)八种请求
- deep seek
m0_69576880
前端ai
1.介绍:DeepSeek是一款由国内人工智能公司研发的大型语言模型,拥有强大的自然语言处理能力,能够理解并回答问题,还能辅助写代码、整理资料和解决复杂的数学问题。免费开源,媲美ChatGPT最近最火爆的AI对话程序。www.deepseek.com这是deepseek官网2.这是deepseek注册页面3.国产语言对话ai,大家有兴趣的可以去试试。不过chatgpt也进行了改变,大家也可以免费使
- Git本地分支与远程分支关联(git branch --set-upstream-to=origin/ )
HainesFreeman
git
某次使用gitpull拉取代码的时候,提示:于是百度了这个命令:(gitbranch--set-upstream-to=origin/这个命令大概就是说,将本地的分支和远程的分支关联起来,下次使用gitpull或者gitpush的时候,不需要这样:gitpushoriginfeature-042-extragitpulloriginfeature-042-extra而是直接这样:gitpushgi
- C++ 洗牌函数std::shuffle的用法
流星雨爱编程
#C++进阶#数据结构和算法c++开发语言
目录1.简介2.工作原理3.std::shuffle与std::random_shuffle的区别4.rand和srand5.std::shuffle的使用方法6.随机数生成器和分布器7.注意事项1.简介std::shuffle是C++标准库中用于对序列进行随机重排(洗牌)的一种算法。它可以将容器(例如std::vector、std::array、或普通数组等)中的元素随机地打乱顺序,就像洗扑克牌
- 计算机视觉——SIFT特征提取与检索算法
-shiba-
计算机视觉算法sift算法
计算机视觉——SIFT特征提取与检索算法1.基本介绍1.1算法特点1.2检测步骤2.基本原理2.1关键点2.2尺度空间2.3高斯模糊2.3.1高斯函数2.3.2高斯模糊2.3.3高斯金字塔2.4DOG函数2.4.1DOG函数的2.5关键点描述及匹配3.实验以及总结3.1实验数据集3.2提取图片SIFT特征,并展示特征点3.2.1代码3.2.2结果展示(选取)3.3计算两张图片SIFT特征匹配结果3
- 高德地图坐标系 转换 EPSG:4326
鎈卟誃筅甡
Openlayersarcgis
若要将高德地图的经纬度(基于GCJ-02坐标系)转换为EPSG:4326(WGS84)坐标系,你需要使用一个能够执行这种坐标转换的库或工具。由于高德地图使用的是GCJ-02坐标系,而EPSG:4326是WGS84坐标系,因此直接转换需要特定的算法。OpenLayers本身并不直接提供从GCJ-02到WGS84的转换功能,但你可以使用其他库,如coordtransform,或者自己实现转换算法。以下
- 基于深度学习YOLOv5的活体人脸检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython人工智能目标跟踪计算机视觉开发语言
一、前言随着人工智能技术的快速发展,计算机视觉(ComputerVision)已广泛应用于各种实际场景中,特别是在安全、金融、医疗等领域。人脸识别作为计算机视觉的一个重要应用,已经成为很多身份验证、安防监控、智能门禁等系统的核心技术。近年来,随着深度学习的突破,YOLO(YouOnlyLookOnce)系列算法因其高效、准确、实时的特点,广泛应用于物体检测任务。在实际的人脸识别应用中,活体人脸检测
- 哈希表-四数之和
Hasno.
散列表数据结构
代码随想录-刷题笔记18.四数之和-力扣(LeetCode)内容:请一定要看上一篇文章!因为本题跟上一道题逻辑一模一样!哈希表-三数之和-CSDN博客这道题跟上一道题的核心一模一样,三数之和可以进行一定程度的简化,变成O(n^2)级别的算法.但是这道题包括五数,六数,七数之后.N数之和都是一个逻辑了。只不过是进行一下套壳。代码如下:classSolution{publicList>fourSum(
- 【Getting Started】-时间复杂度-Time Complexity
zaiyang遇见
#Bronze(青铜组)信息学奥赛程序设计竞赛IOI时间复杂度USACO
文章目录时间复杂度计算-ComplexityCalculations常见的复杂度和限制-CommonComplexitiesandConstraints问题集-Quiz计算算法执行的操作次数。Measuringthenumberofoperationsanalgorithmperforms.在编程竞赛中,程序需要在限定时间内运行才能获得评分。例如,对于USACO,C++提交的时间限制是222秒,J
- 优化算法全景解析:从梯度下降到群体智能
welcome_123_
算法python人工智能
一、引言:为什么需要优化算法?在AlphaGo击败人类围棋冠军的背后,在特斯拉自动驾驶系统实时决策的瞬间,在推荐系统精准推送内容的过程中,优化算法始终是推动这些技术落地的核心引擎。无论是机器学习模型的训练,还是复杂系统的参数调优,优化算法的本质是:在给定的约束条件下,找到使目标函数最优的解。本文将深入解析优化算法的核心原理、经典方法、现代进展及实战应用,助你全面掌握这一技术利器。二、优化算法分类图
- 算法-哈希表篇05-四数相加II
Buling_0
算法篇算法散列表数据结构
四数相加II力扣题目链接题目描述给你四个整数数组nums1、nums2、nums3和nums4,数组长度都是n,请你计算有多少个元组(i,j,k,l)能满足:0&nums1,vector&nums2,vector&nums3,vector&nums4){intans=0;unordered_mapum;for(inta:nums1){for(intb:nums2){um[a+b]++;}}for(
- 算法-数组篇04-长度最小的子字符串
Buling_0
算法篇算法数据结构leetcode
长度最小的子字符串力扣题目链接题目描述给定一个含有n个正整数的数组和一个正整数target。找出该数组中满足其总和大于等于target的长度最小的子数组[numsl,numsl+1,…,numsr-1,numsr],并返回其长度。如果不存在符合条件的子数组,返回0。滑动窗口和双指针方法类似,给定一个长度l,在数组中依次遍历0到l,1到l+1…,r到r+l。利用这个方法可以求解数组中一些子字符串的问
- JVM学习目录
张紫娃
JVMjvm学习笔记
JVM运行时数据区域JVM启动参数JVM监控工具查看堆内存进程里jvm最大线程数OutOfMemoryError分类JVM垃圾回收机制GC如何判定对象已死方法区的垃圾收集垃圾收集算法JVM垃圾回收器调用垃圾回收器方法JVM内存分配与垃圾收集流程class文件常量池,字符串常量池,运行时常量池到底是啥?JAVA性能优化建议
- c#自动更新-源码
未来之窗软件服务
c#服务器网络
软件维护与升级修复漏洞和缺陷:软件在使用过程中可能会发现各种漏洞和缺陷,自动更新可以及时推送修复程序,增强软件的稳定性和安全性,避免因漏洞被利用而导致数据泄露、系统崩溃等问题。提升性能:通过自动更新,可以对软件的算法、代码逻辑等进行优化,提高软件的运行效率,减少资源占用,让软件运行得更加流畅。添加新功能:随着业务的发展和用户需求的变化,软件需要不断添加新功能来满足用户。自动更新能够方便地将新功能推
- 微信小程序邂逅Echarts:从入门到避坑全攻略
Jiaberrr
javascript前端微信小程序小程序vue.js
一、引言在当今数字化时代,数据可视化对于数据分析和展示至关重要。微信小程序作为一种轻量级应用,在各类场景中广泛应用,而在小程序中实现数据可视化,能让用户更直观地理解数据。Echarts是一款由百度开源的强大的数据可视化图表库,提供了丰富的图表类型,如折线图、柱状图、饼图、地图等,满足各种数据展示需求。将Echarts集成到微信小程序中,能为小程序增添强大的数据可视化能力,提升用户体验。无论是展示业
- 量子计算 for Everyone?Amazon Braket 如何降低技术门槛?
Anna_Tong
量子计算awsdevops人工智能科技云端量子计算AmazonBraket
在科技飞速发展的今天,量子计算已不再只是理论探索,而是逐步走向实际应用的前沿技术。它被视为计算领域的颠覆性突破,能够解决经典计算机难以处理的复杂问题,如优化算法、材料科学、人工智能、金融建模等。然而,受限于昂贵的硬件成本、高门槛的算法开发,以及复杂的量子物理知识,量子计算的普及仍面临巨大挑战。AmazonBraket作为AWS旗下的云端量子计算平台,正试图改变这一现状。它不仅提供量子计算的基础设施
- 目标检测代码示例(基于Python和OpenCV)
matlab_python22
计算机视觉
引言目标检测是计算机视觉领域中的一个核心任务,其目标是在图像或视频中定位和识别特定对象。随着技术的发展,目标检测算法不断演进,从传统的基于手工特征的方法到现代的深度学习方法,再到基于Transformer的架构,目标检测技术已经取得了显著的进步。本文将总结和对比几种主要的目标检测算法,探讨它们的优势、劣势和适用场景。1.目标检测算法分类1.1单阶段检测(One-Stage)与双阶段检测(Two-S
- Python知识点:基于Python技术,如何使用YOLO进行实时物体检测
超哥同学
Python系列pythonYOLO开发语言面试编程
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!使用YOLO进行实时物体检测的Python技术详解实时物体检测是计算机视觉中的一个关键任务,它要求算法能够快速且准确地识别和定位图像或视频流中的物体。YOLO(YouOnlyLookOnce)算法因其速度快、性能高而受到广泛关注。在本文中,我们将详细介绍如何使用Python和YOLO
- FZU ACM 寒假第五讲:搜索算法
ZOEKOFK
算法
第一题:自然数的拆分问题source:洛谷-P2404解题思路:经典的深搜,只是要注意一下结束条件和递归的逻辑顺序;以及保证每行输出的单调ACcode:#includeusingnamespacestd;intn;inta[10];voiddfs(intstep,intsum,intbeg){if(sum>n){return;}if(sum==n){cout>n;dfs(0,0,1);return
- 华为FreeBuds Pro 3耳机降噪效果明显吗?对比苹果Air Pods Pro 2怎么样?
反方向的小钟
华为
华为FreeBudsPro3降噪不好,效果差?苹果AirPodsPro2耳机降噪好,还是华为FreeBudsPro3耳机降噪效果好?我想针对以上两个问题,简单地回答好或者差,过于主观。下面,我们先来看看这一次全新升级的华为FreeBudsPro3耳机关于降噪的关键词:智慧动态降噪3.0、降噪能力提升50%!这一次华为FreeBudsPro3,智慧动态降噪3.0,借助强大的芯片和AI算法助力,能够将
- 动手学深度学习笔记|3.2线性回归的从零开始实现(附课后习题答案)
lusterku
动手学深度学习深度学习笔记线性回归
动手学深度学习笔记|3.2线性回归的从零开始实现(附课后习题答案)线性回归的从零开始实现生成数据集读取数据集初始化模型参数定义模型定义损失函数定义优化算法训练练习1.如果我们将权重初始化为零,会发生什么。算法仍然有效吗?2.计算二阶导数时可能会遇到什么问题?这些问题可以如何解决?3.为什么在`squared_loss`函数中需要使用`reshape`函数?4.尝试使用不同的学习率,观察损失函数值下
- Meta2d.js:2D图元组成的可视化引擎
乐吾乐科技
2D可视化组态编辑器vue.js编辑器前端数据可视化html
Meta2d.js:2D图元组成的可视化引擎。由乐吾乐科技自主研发,集实时数据展示、动态交互、数据管理等一体的全功能2D可视化引擎。【注意】Meta2d.js是一个不依赖任何前端框架的js图形引擎。使用Meta2d.js可以简单快速的开发自己的Web组态、Scada、智慧大屏的可视化产品,也可以开发类似Visio等的流程图、脑图等工具。Meta2d.js内置实时监控、动态交互、自动算法、可扩展等功
- 《网络安全自学教程》- 子域名收集
士别三日wyx
《网络安全自学教程》网络安全安全web安全
《网络安全自学教程》子域名收集1、域名爆破工具1.1、泛域名解析1.2、泛域名解析与CND的冲突二、搜索引擎语法收集子域名1、百度2、必应三、第三方网站1、VirusTotal2、DNSdumpster3、站长之家四、证书透明性发现子域名五、DNS域传送漏洞发现子域名子域名就是下一级域名的意思,比如map.baidu.com和image.baidu.com就是baidu.com的两个子域名,每个域
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/pwd@192.168.0.5:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理