动手学深度学习10:汇聚层(pooling)

动手学深度学习10:汇聚层(pooling)

通常当我们处理图像时,我们希望逐渐降低隐藏表示的空间分辨率、聚集信息,这样随着我们在神经网络中层叠的上升,每个神经元对其敏感的感受野(输入)就越大。

而我们的机器学习任务通常会跟全局图像的问题有关(例如,“图像是否包含一只猫呢?”),所以我们最后一层的神经元应该对整个输入的全局敏感。通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有优势保留在中间层。

除此之外,汇聚层海可以降低卷积层对位置的敏感性,使得模型具有更好的鲁棒性。

最大汇聚层和平均汇聚层

动手学深度学习10:汇聚层(pooling)_第1张图片

汇聚窗口形状为 p × q p \times q p×q的汇聚层称为 p × q p \times q p×q汇聚层,汇聚操作称为 p × q p \times q p×q汇聚。

import torch
from torch import nn
from d2l import torch as d2l

def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
print(pool2d(X, (2, 2)))
print(pool2d(X, (2, 2), 'avg'))

与卷积层一样,汇聚层也可以改变输出形状。

默认情况下,(深度学习框架中的步幅与汇聚窗口的大小相同)。
因此,如果我们使用形状为(3, 3)的汇聚窗口,那么默认情况下,我们得到的步幅形状为(3, 3)

X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
# tensor([[[[ 0.,  1.,  2.,  3.],
#           [ 4.,  5.,  6.,  7.],
#           [ 8.,  9., 10., 11.],
#           [12., 13., 14., 15.]]]])
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X) 
# tensor([[[[ 5.,  7.],
#           [13., 15.]]]])

在处理多通道输入数据时,[汇聚层在每个输入通道上单独运算],而不是像卷积层一样在通道上对输入进行汇总。
这意味着汇聚层的输出通道数与输入通道数相同。

小结

  • 对于给定输入元素,最大汇聚层会输出该窗口内的最大值,平均汇聚层会输出该窗口内的平均值。
  • 汇聚层的主要优点之一是减轻卷积层对位置的过度敏感。
  • 我们可以指定汇聚层的填充和步幅。
  • 使用最大汇聚层以及大于1的步幅,可减少空间维度(如高度和宽度)。
  • 汇聚层的输出通道数与输入通道数相同。

你可能感兴趣的:(深度学习,深度学习,python,计算机视觉)