Cuda和Cudnn安装

Cuda&Cudnn

  • Cuda
  • Cudnn
  • pytorch

Cuda

先查看电脑的cuda版本, cmd窗口下输入nvidia-smi

Cuda和Cudnn安装_第1张图片

去https://developer.nvidia.com/cuda-toolkit-archive下载相应版本的cuda,Cuda和Cudnn安装_第2张图片
选择local
Cuda和Cudnn安装_第3张图片

安装时若遇到
“You already have a newer version of the NVIDIA Frameview SDK installed”
先把电脑已经存在的FrameView SDK 卸载掉,把C:\Program Files\NVIDIA Corporation\FrameViewSDK文件夹删掉
Cuda和Cudnn安装_第4张图片

Cuda和Cudnn安装_第5张图片
选择自定义安装, 后面全部默认就行了,
Cuda和Cudnn安装_第6张图片
此时,打开环境变量查看,是有CUDA_PATH和CUDA_PATH_V版本号
Cuda和Cudnn安装_第7张图片
在cmd中输入nvcc -V 查看刚刚安装的cuda
Cuda和Cudnn安装_第8张图片
cuda安装成功!

Cudnn

cudnn一定要和cuda的版本兼容,否则会安装失败

cuDNN Download:https://developer.nvidia.com/rdp/cudnn-download
(第一次需要注册,注册过的直接登录)
Cuda和Cudnn安装_第9张图片
注意要打勾才显示下载列表,点Archived cuDNN Releases查看更多版本,选择和cuda匹配的版本下载安装,

下载完后是一个压缩包,解压出来
Cuda和Cudnn安装_第10张图片
将解压出来的bin, include, lib\x64 文件下的内容分别复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2目录下的bin, include, lib\x64 文件下

Cuda和Cudnn安装_第11张图片
Cuda和Cudnn安装_第12张图片
在环境变量的path中添加下面两个路径:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib\x64

打开cmd, 执行C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\demo_suite下的bandwidthTest.exe和deviceQuery.exe检查是否安装成功:
Cuda和Cudnn安装_第13张图片
Cuda和Cudnn安装_第14张图片
收到两个pass则表示安装成功了

Cudnn安装完成!!

pytorch

安装好cuda和cudnn后去安装pytorch, 如果用其他框架的也同理,
https://pytorch.org/

选择自己的安装方式 (我自己安装了CUDA是11.2, 由于在这没找到pytorch11.2版本,用了这个11.1版本也能使用, 可能因为版本接近,兼容了吧),复制Command命令,
Cuda和Cudnn安装_第15张图片
Cuda和Cudnn安装_第16张图片
等待下载,网不好的话,可能会有点久

验证GPU是否能使用:

Cuda和Cudnn安装_第17张图片

你可能感兴趣的:(python,cuda,cudnn,pytorch,python)