( C ) ′ = 0 (C)^{\prime}=0 (C)′=0
( x μ ) ′ = μ x μ − 1 \left(x^{\mu}\right)^{\prime}=\mu x^{\mu-1} (xμ)′=μxμ−1
( sin x ) ′ = cos x (\sin x)^{\prime}=\cos x (sinx)′=cosx
( cos x ) ′ = − sin x (\cos x)^{\prime}=-\sin x (cosx)′=−sinx
( tan x ) ′ = sec 2 x (\tan x)^{\prime}=\sec ^{2} x (tanx)′=sec2x
( cot x ) ′ = − csc 2 x (\cot x)^{\prime}=-\csc ^{2} x (cotx)′=−csc2x
( sec x ) ′ = sec x tan x (\sec x)^{\prime}=\sec x \tan x (secx)′=secxtanx
( csc x ) ′ = − csc x cot x (\csc x)^{\prime}=-\csc x \cot x (cscx)′=−cscxcotx
( arcsin x ) ′ = 1 1 − x 2 ( arccos x ) ′ = − 1 1 − x 2 ( arctan x ) ′ = 1 1 + x 2 ( arccot x ) ′ = − 1 1 + x 2 \begin{aligned}(\arcsin x)^{\prime} &=\frac{1}{\sqrt{1-x^{2}}} \\(\arccos x)^{\prime} &=\frac{-1}{\sqrt{1-x^{2}}} \\(\arctan x)^{\prime} &=\frac{1}{1+x^{2}} \\(\operatorname{arccot} x)^{\prime} &=\frac{-1}{1+x^{2}} \end{aligned} (arcsinx)′(arccosx)′(arctanx)′(arccotx)′=1−x21=1−x2−1=1+x21=1+x2−1
( a x ) ′ = a x ln a \left(a^{x}\right)^{\prime}=a^{x} \ln a (ax)′=axlna
( e x ) ′ = e x \left(e^{x}\right)^{\prime}=e^{x} (ex)′=ex
( log a x ) ′ = 1 x ln a \left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a} (logax)′=xlna1
( ln x ) ′ = 1 x (\ln x)^{\prime}=\frac{1}{x} (lnx)′=x1
( u ± v ) ′ = u ′ ± v ′ (u \pm v)^{\prime}=u^{\prime} \pm v^{\prime} (u±v)′=u′±v′
( C u ) ′ = C u ′ (C u)^{\prime}=C u^{\prime} (Cu)′=Cu′
( u v ) ′ = u ′ v + u v ′ (u v)^{\prime}=u^{\prime} v+u v^{\prime} (uv)′=u′v+uv′
( u v ) ′ = u ′ v − u v ′ v 2 \left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} (vu)′=v2u′v−uv′
( u ⋅ v ) ′ ′ = u ′ ′ ⋅ v + 2 u ′ ⋅ v ′ + u ⋅ v ′ ′ (u \cdot v)^{\prime \prime}=u^{\prime \prime} \cdot v+2 u^{\prime} \cdot v^{\prime}+u \cdot v^{\prime \prime} (u⋅v)′′=u′′⋅v+2u′⋅v′+u⋅v′′
( u ⋅ v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (u \cdot v)^{(n)}=\sum_{k=0}^{n} C_{n}^{k} u^{(n-k)} v^{(k)} (u⋅v)(n)=∑k=0nCnku(n−k)v(k)
( a x ) ( n ) = ( ln a ) n ⋅ a x \left(a^{x}\right)^{(n)}=(\ln a)^{n} \cdot a^{x} (ax)(n)=(lna)n⋅ax
( e x ) ( n ) = e x \left(e^{x}\right)^{(n)}=e^{x} (ex)(n)=ex
( sin k x ) ( n ) = k n sin ( n π 2 + k x ) (\sin k x)^{(n)}=k^{n} \sin \left(\frac{n \pi}{2}+k x\right) (sinkx)(n)=knsin(2nπ+kx)
( cos k x ) ( n ) = k n cos ( n π 2 + k x ) (\cos k x)^{(n)}=k^{n} \cos \left(\frac{n \pi}{2}+k x\right) (coskx)(n)=kncos(2nπ+kx)
( ln x ) ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! x n (\ln x)^{(n)}=(-1)^{n-1} \frac{(n-1) !}{x^{n}} (lnx)(n)=(−1)n−1xn(n−1)!
( 1 x ) ( n ) = ( − 1 ) n n ! x n + 1 \left(\frac{1}{x}\right)^{(n)}=(-1)^{n} \frac{n !}{x^{n+1}} (x1)(n)=(−1)nxn+1n!
( 1 x + a ) ( n ) = ( − 1 ) n n ! ( x + a ) n + 1 \left(\frac{1}{x+a}\right)^{(n)}=(-1)^{n} \frac{n !}{(x+a)^{n+1}} (x+a1)(n)=(−1)n(x+a)n+1n!
( x m ) ( n ) = m ( m − 1 ) ⋯ ( m − n + 1 ) x m − n \left(x^{m}\right)^{(n)}=m(m-1) \cdots(m-n+1) x^{m-n} (xm)(n)=m(m−1)⋯(m−n+1)xm−n
( u ± v ) ( n ) = u ( n ) ± v ( n ) (u \pm v)^{(n)}=u^{(n)} \pm v^{(n)} (u±v)(n)=u(n)±v(n)
设函数 z = f ( u , v ) z=f(u, v) z=f(u,v)可微 u = u ( x , y ) , v = v ( x , y ) u=u(x, y), \quad v=v(x, y) u=u(x,y),v=v(x,y)具有一阶偏导数,并且它们可以构成 , z z z关于 ( x , y ) (x,y) (x,y)在某区域D内的复合函数,则在D内有复合函数求导法则:
∂ z ∂ x = ∂ z ∂ u ⋅ ∂ u ∂ x + ∂ z ∂ v ⋅ ∂ v ∂ x \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} ∂x∂z=∂u∂z⋅∂x∂u+∂v∂z⋅∂x∂v
∂ z ∂ y = ∂ z ∂ u ⋅ ∂ u ∂ y + ∂ z ∂ v ⋅ ∂ v ∂ y \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} ∂y∂z=∂u∂z⋅∂y∂u+∂v∂z⋅∂y∂v
设函数 F ( x , y , z ) F(x, y, z) F(x,y,z) 在点 P 0 ( x 0 , y 0 , z 0 ) P_{0}\left(x_{0}, y_{0}, z_{0}\right) P0(x0,y0,z0) 的某邻域内有连续偏导数, 并且 F ( x 0 , y 0 , z 0 ) = 0 F\left(x_{0}, y_{0}, z_{0}\right)=0 F(x0,y0,z0)=0, F z ′ ( x 0 , y 0 , z 0 ) ≠ 0 , F_{z}^{\prime}\left(x_{0}, y_{0}, z_{0}\right) \neq 0, Fz′(x0,y0,z0)=0, 则方程 F ( x 0 , y 0 , z 0 ) = 0 F\left(x_{0}, y_{0}, z_{0}\right)=0 F(x0,y0,z0)=0 在点 P 0 P_{0} P0 的某一邻域内恒能确定唯一的连续函数 z = f ( x , y ) z=f(x, y) z=f(x,y)满足:
∫ k d x = k x + C \int k d x=k x+C ∫kdx=kx+C
∫ x μ d x = 1 μ + 1 ⋅ x μ + 1 + C ( μ ≠ − 1 ) \int x^{\mu} d x=\frac{1}{\mu+1} \cdot x^{\mu+1}+C(\mu \neq-1) ∫xμdx=μ+11⋅xμ+1+C(μ=−1)
∫ d x x = ln ∣ x ∣ + C \int \frac{d x}{x}=\ln |x|+C ∫xdx=ln∣x∣+C
∫ cos x d x = sin x + C \int \cos x d x=\sin x+C ∫cosxdx=sinx+C
∫ sin x d x = − cos x + C \int \sin x d x=-\cos x+C ∫sinxdx=−cosx+C
∫ d x cos 2 x = ∫ sec 2 x d x = tan x + C \int \frac{d x}{\cos ^{2} x}=\int \sec ^{2} x d x=\tan x+C ∫cos2xdx=∫sec2xdx=tanx+C
∫ d x sin 2 x = ∫ csc 2 x d x = − cot x + C \int \frac{d x}{\sin ^{2} x}=\int \csc ^{2} x d x=-\cot x+C ∫sin2xdx=∫csc2xdx=−cotx+C
∫ sec x tan x d x = sec x + C \int \sec x \tan x d x=\sec x+C ∫secxtanxdx=secx+C
∫ csc x cot x d x = − csc x + C \int \csc x \cot x d x=-\csc x+C ∫cscxcotxdx=−cscx+C
∫ d x 1 + x 2 = arctan x + C \int \frac{d x}{1+x^{2}}=\arctan x+C ∫1+x2dx=arctanx+C
∫ d x 1 − x 2 = arcsin x + C \int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C ∫1−x2dx=arcsinx+C
∫ d x a 2 + x 2 = 1 a arctan x a + C \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C ∫a2+x2dx=a1arctanax+C
∫ d x a 2 − x 2 = arcsin x a + C \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+C ∫a2−x2dx=arcsinax+C
∫ d x x 2 − a 2 = 1 2 a ln ∣ x − a x + a ∣ + C \int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|+C ∫x2−a2dx=2a1ln∣∣x+ax−a∣∣+C
∫ d x a 2 − x 2 = 1 2 a ln ∣ x + a x − a ∣ + C \int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \ln \left|\frac{x+a}{x-a}\right|+C ∫a2−x2dx=2a1ln∣∣x−ax+a∣∣+C
∫ d x x 2 + a 2 = ln ( x + x 2 + a 2 ) + C \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C ∫x2+a2dx=ln(x+x2+a2)+C
∫ d x x 2 − a 2 = ln ∣ x + x 2 − a 2 ∣ + C \int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\ln \left|x+\sqrt{x^{2}-a^{2}}\right|+C ∫x2−a2dx=ln∣∣x+x2−a2∣∣+C
∫ x 2 − x 2 d x = − x 2 a 2 − x 2 + a 2 2 arcsin x a + C \int \sqrt{x^{2}-x^{2}} d x=-\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \arcsin \frac{x}{a}+C ∫x2−x2dx=−2xa2−x2+2a2arcsinax+C
∫ tan x d x = ∫ sin x cos x d x = − ∫ d cos x cos x = − ln ∣ cos x ∣ + C \int \tan x d x=\int \frac{\sin x}{\cos x} d x=-\int \frac{d \cos x}{\cos x}=-\ln |\cos x|+C ∫tanxdx=∫cosxsinxdx=−∫cosxdcosx=−ln∣cosx∣+C
∫ cot x d x = ln ∣ sin x ∣ + C \int \cot x d x=\ln |\sin x|+C ∫cotxdx=ln∣sinx∣+C
∫ csc x d x = ln ∣ tan x 2 ∣ + C = ln ∣ csc x − cot x ∣ + C \int \csc x d x=\ln \left|\tan \frac{x}{2}\right|+C=\ln |\csc x-\cot x|+C ∫cscxdx=ln∣∣tan2x∣∣+C=ln∣cscx−cotx∣+C
∫ sec x d x = ln ∣ sec x + tan x ∣ + C \int \sec x d x=\ln |\sec x+\tan x|+C ∫secxdx=ln∣secx+tanx∣+C
∫ e x d x = e x + C \int e^{x} d x=e^{x}+C ∫exdx=ex+C
∫ a x d x = 1 ln a a x + C \int a^{x} d x=\frac{1}{\ln a} a^{x}+C ∫axdx=lna1ax+C
u = tan x 2 sin x = 2 u 1 + u 2 cos x = 1 − u 2 1 + u 2 d x = 2 1 + u 2 d u \begin{aligned} u &=\tan \frac{x}{2} \\ \sin x &=\frac{2 u}{1+u^{2}} \\ \cos x &=\frac{1-u^{2}}{1+u^{2}} \\ d x &=\frac{2}{1+u^{2}} d u \end{aligned} usinxcosxdx=tan2x=1+u22u=1+u21−u2=1+u22du
万能代换可以将三角函数换成有理分式的形式来进行积分。
{ a 2 − x 2 → x = a sin t a 2 + x 2 → x = atan t x 2 − a 2 → x = asec t \left\{\begin{array}{l}\sqrt{a^{2}-x^{2}} \rightarrow x=a \sin t \\ \sqrt{a^{2}+x^{2}} \rightarrow x=\operatorname{atan} t \\ \sqrt{x^{2}-a^{2}} \rightarrow x=\operatorname{asec} t\end{array}\right. ⎩⎨⎧a2−x2→x=asinta2+x2→x=atantx2−a2→x=asect
∫ u d v = u v − ∫ v d u \int u d v=u v-\int v d u ∫udv=uv−∫vdu
{ ∑ i = 1 ∞ f ( i n ) 1 n = ∫ 0 1 f ( t ) d t ∑ i = 1 ∞ f ( x ⋅ i n ) x n = ∫ 0 x f ( t ) d t ∑ i = 1 ∞ f ( a + ( b − a ) ⋅ i n ) b − a n = ∫ a b f ( t ) d t \left\{\begin{array}{l}\sum_{i=1}^{\infty} f\left(\frac{i}{n}\right) \frac{1}{n}=\int_{0}^{1} f(t) d t \\ \sum_{i=1}^{\infty} f\left(\frac{x \cdot i}{n}\right) \frac{x}{n}=\int_{0}^{x} f(t) d t \\ \sum_{i=1}^{\infty} f\left(a+\frac{(b-a) \cdot i}{n}\right) \frac{b-a}{n}=\int_{a}^{b} f(t) d t\end{array}\right. ⎩⎪⎨⎪⎧∑i=1∞f(ni)n1=∫01f(t)dt∑i=1∞f(nx⋅i)nx=∫0xf(t)dt∑i=1∞f(a+n(b−a)⋅i)nb−a=∫abf(t)dt
F ( x ) = ∫ φ 1 ( x ) φ 2 ( x ) f ( t ) d t F(x)=\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(t) d t F(x)=∫φ1(x)φ2(x)f(t)dt
F ′ ( x ) = d d x [ ∫ φ 1 ( x ) φ 2 ( x ) f ( t ) d t ] = f [ φ 2 ( x ) ] φ 2 ′ ( x ) − f [ φ 1 ( x ) ] φ 1 ′ ( x ) F^{\prime}(x)=\frac{d}{d x}\left[\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(t) d t\right]=f\left[\varphi_{2}(x)\right] \varphi_{2}^{\prime}(x)-f\left[\varphi_{1}(x)\right] \varphi_{1}^{\prime}(x) F′(x)=dxd[∫φ1(x)φ2(x)f(t)dt]=f[φ2(x)]φ2′(x)−f[φ1(x)]φ1′(x)
二重积分可以化为累次积分的定积分,表示曲顶柱体的体积。
∬ D f ( x , y ) d σ \iint_{D} f(x, y) d \sigma ∬Df(x,y)dσ
= ∫ a x b x d x ∫ a y b y f ( x , y ) d y \stackrel{}{=} \int_{a_{x}}^{b_{x}} d x \int_{a_{y}}^{b_{y}} f(x, y) d y =∫axbxdx∫aybyf(x,y)dy
= ∫ a θ b θ d θ ∫ a r b r f ( r cos θ , r sin θ ) r d r =\int_{a_{\theta}}^{b_{\theta}} d \theta \int_{a_{r}}^{b_{r}} f(r \cos \theta, r \sin \theta) r d r =∫aθbθdθ∫arbrf(rcosθ,rsinθ)rdr
∑ i = 1 ∞ ∑ j = 1 ∞ f ( i n , j n ) 1 n 2 = ∫ 0 1 ∫ 0 1 f ( x , y ) d x d y \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f\left(\frac{i}{n}, \frac{j}{n}\right) \frac{1}{n^{2}}=\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y ∑i=1∞∑j=1∞f(ni,nj)n21=∫01∫01f(x,y)dxdy
三重积分可以化为累次积分的定积分,表示空间区域 以密度 ρ = f ( x , y , z ) \rho=f(x, y, z) ρ=f(x,y,z)的质量。
∭ Ω f ( x , y , z ) d v = ∫ a x b x d x ∫ a y b y d y ∫ a z b z f ( x , y , z ) d z = ∫ a z b z d z ∬ D f ( x , y , z ) d σ = ∭ Ω f ( r cos θ , r sin θ , z ) r d r d θ = ∭ Ω f ( r sin φ cos θ , r sin φ sin θ , r cos φ ) ⋅ r 2 sin φ d r d φ d θ \begin{aligned} & \iiint_{\Omega} f(x, y, z) d v \\=& \int_{a_{x}}^{b_{x}} d x \int_{a_{y}}^{b_{y}} d y \int_{a_{z}}^{b_{z}} f(x, y, z) d z \\=& \int_{a_{z}}^{b_{z}} d z \iint_{D} f(x, y, z) d \sigma \\=& \iiint_{\Omega} f(r \cos \theta, r \sin \theta, z) r d r d \theta \\=& \iiint_{\Omega} f(r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi) \cdot r^{2} \sin \varphi d r d \varphi d \theta \end{aligned} ====∭Ωf(x,y,z)dv∫axbxdx∫aybydy∫azbzf(x,y,z)dz∫azbzdz∬Df(x,y,z)dσ∭Ωf(rcosθ,rsinθ,z)rdrdθ∭Ωf(rsinφcosθ,rsinφsinθ,rcosφ)⋅r2sinφdrdφdθ
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2 !}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}+R_{n}(x) f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+⋯+n!f(n)(x0)(x−x0)n+Rn(x)
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) ( n + 1 ) ξ ∈ ( x , x 0 ) R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1) !}\left(x-x_{0}\right)^{(n+1)} \xi \in\left(x, x_{0}\right) Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)(n+1)ξ∈(x,x0)
R n ( x ) = o [ ( x − x 0 ) n ] R_{n}(x)=o\left[\left(x-x_{0}\right)^{n}\right] Rn(x)=o[(x−x0)n]
sin x = x − x 3 3 ! + x 5 5 ! + ⋯ + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + o ( x 2 n + 1 ) \sin x=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) !}+o\left(x^{2 n+1}\right) sinx=x−3!x3+5!x5+⋯+(−1)n(2n+1)!x2n+1+o(x2n+1)
cos x = 1 − x 2 2 ! + x 4 4 ! + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n ) \cos x=1-\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n) !}+o\left(x^{2 n}\right) cosx=1−2!x2+4!x4+⋯+(−1)n(2n)!x2n+o(x2n)
e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ + x n n ! + o ( x n ) e^{x}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\cdots+\frac{x^{n}}{n !}+o\left(x^{n}\right) ex=1+x+2!x2+3!x3+⋯+n!xn+o(xn)
ln ( 1 + x ) = x − x 2 2 + x 3 3 + ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}+o\left(x^{n}\right) ln(1+x)=x−2x2+3x3+⋯+(−1)n−1nxn+o(xn)
tan x = x + x 3 3 + o ( x 3 ) \tan x=x+\frac{x^{3}}{3}+o\left(x^{3}\right) tanx=x+3x3+o(x3)
arcsin x = x + x 3 3 ! + o ( x 3 ) \arcsin x=x+\frac{x^{3}}{3 !}+o\left(x^{3}\right) arcsinx=x+3!x3+o(x3)
arctan x = x − x 3 3 + o ( x 3 ) \arctan x=x-\frac{x^{3}}{3}+o\left(x^{3}\right) arctanx=x−3x3+o(x3)
( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + o ( x 2 ) (1+x)^{a}=1+a x+\frac{a(a-1)}{2 !} x^{2}+o\left(x^{2}\right) (1+x)a=1+ax+2!a(a−1)x2+o(x2)
e x = ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ + x n n ! + ⋯ , − ∞ < x < + ∞ e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\cdots+\frac{x^{n}}{n !}+\cdots,-\infty
1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − ⋯ + ( − 1 ) n x n + ⋯ , − 1 < x < 1 \frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-\cdots+(-1)^{n} x^{n}+\cdots,-1
1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + ⋯ + x n + ⋯ , − 1 < x < 1 \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots+x^{n}+\cdots,-1
ln ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 x n n = x − x 2 2 + ⋯ + ( − 1 ) n − 1 x n n + ⋯ , − 1 < x ⩽ 1 \ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\cdots,-1
sin x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = x − x 3 3 ! + ⋯ + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + ⋯ , − ∞ < x < + ∞ \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) !}=x-\frac{x^{3}}{3 !}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) !}+\cdots,-\infty
cos x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = 1 − x 2 2 ! + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + ⋯ , − ∞ < x < + ∞ \cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n) !}=1-\frac{x^{2}}{2 !}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n) !}+\cdots,-\infty
{ ∑ n = 1 ∞ n x n − 1 = 1 ( 1 − x ) 2 ( − 1 < x < 1 ) ∑ n = 1 ∞ 1 n x n = − ln ( 1 − x ) ( − 1 ⩽ x < 1 ) \left\{\begin{array}{ll}\sum_{n=1}^{\infty} n x^{n-1}=\frac{1}{(1-x)^{2}} & (-1
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos n π x l + b n sin n π x l ) a 0 = 1 l ∫ − l l f ( x ) d x a n = 1 l ∫ − l l f ( x ) cos n π x l d x b n = 1 l ∫ − l l f ( x ) sin n π x l d x \begin{aligned} f(x) &=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right) \\ a_{0} &=\frac{1}{l} \int_{-l}^{l} f(x) d x \\ a_{n} &=\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} d x \\ b_{n} &=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} d x \end{aligned} f(x)a0anbn=2a0+n=1∑∞(ancoslnπx+bnsinlnπx)=l1∫−llf(x)dx=l1∫−llf(x)coslnπxdx=l1∫−llf(x)sinlnπxdx