数学分析基础知识整理

数学分析基础知识整理

    • 基本求导公式
    • 莱布尼茨求导公式
    • 高阶导数
    • 复合函数求导法则
    • 隐函数求导法则
    • 基本积分公式
      • 万能代换
      • 分部积分
    • 级数定积分转换
    • 变限积分函数求导
    • 二重积分
    • 三重积分
    • 常用泰勒公式
    • 重要幂级数展开式
    • 无穷级数的和函数
    • 傅里叶级数

基本求导公式

( C ) ′ = 0 (C)^{\prime}=0 (C)=0
( x μ ) ′ = μ x μ − 1 \left(x^{\mu}\right)^{\prime}=\mu x^{\mu-1} (xμ)=μxμ1

( sin ⁡ x ) ′ = cos ⁡ x (\sin x)^{\prime}=\cos x (sinx)=cosx
( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)^{\prime}=-\sin x (cosx)=sinx
( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)^{\prime}=\sec ^{2} x (tanx)=sec2x
( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)^{\prime}=-\csc ^{2} x (cotx)=csc2x
( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)^{\prime}=\sec x \tan x (secx)=secxtanx
( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)^{\prime}=-\csc x \cot x (cscx)=cscxcotx

( arcsin ⁡ x ) ′ = 1 1 − x 2 ( arccos ⁡ x ) ′ = − 1 1 − x 2 ( arctan ⁡ x ) ′ = 1 1 + x 2 ( arccot ⁡ x ) ′ = − 1 1 + x 2 \begin{aligned}(\arcsin x)^{\prime} &=\frac{1}{\sqrt{1-x^{2}}} \\(\arccos x)^{\prime} &=\frac{-1}{\sqrt{1-x^{2}}} \\(\arctan x)^{\prime} &=\frac{1}{1+x^{2}} \\(\operatorname{arccot} x)^{\prime} &=\frac{-1}{1+x^{2}} \end{aligned} (arcsinx)(arccosx)(arctanx)(arccotx)=1x2 1=1x2 1=1+x21=1+x21

( a x ) ′ = a x ln ⁡ a \left(a^{x}\right)^{\prime}=a^{x} \ln a (ax)=axlna
( e x ) ′ = e x \left(e^{x}\right)^{\prime}=e^{x} (ex)=ex
( log ⁡ a x ) ′ = 1 x ln ⁡ a \left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a} (logax)=xlna1
( ln ⁡ x ) ′ = 1 x (\ln x)^{\prime}=\frac{1}{x} (lnx)=x1

( u ± v ) ′ = u ′ ± v ′ (u \pm v)^{\prime}=u^{\prime} \pm v^{\prime} (u±v)=u±v
( C u ) ′ = C u ′ (C u)^{\prime}=C u^{\prime} (Cu)=Cu
( u v ) ′ = u ′ v + u v ′ (u v)^{\prime}=u^{\prime} v+u v^{\prime} (uv)=uv+uv
( u v ) ′ = u ′ v − u v ′ v 2 \left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} (vu)=v2uvuv

莱布尼茨求导公式

( u ⋅ v ) ′ ′ = u ′ ′ ⋅ v + 2 u ′ ⋅ v ′ + u ⋅ v ′ ′ (u \cdot v)^{\prime \prime}=u^{\prime \prime} \cdot v+2 u^{\prime} \cdot v^{\prime}+u \cdot v^{\prime \prime} (uv)=uv+2uv+uv
( u ⋅ v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (u \cdot v)^{(n)}=\sum_{k=0}^{n} C_{n}^{k} u^{(n-k)} v^{(k)} (uv)(n)=k=0nCnku(nk)v(k)

高阶导数

( a x ) ( n ) = ( ln ⁡ a ) n ⋅ a x \left(a^{x}\right)^{(n)}=(\ln a)^{n} \cdot a^{x} (ax)(n)=(lna)nax
( e x ) ( n ) = e x \left(e^{x}\right)^{(n)}=e^{x} (ex)(n)=ex
( sin ⁡ k x ) ( n ) = k n sin ⁡ ( n π 2 + k x ) (\sin k x)^{(n)}=k^{n} \sin \left(\frac{n \pi}{2}+k x\right) (sinkx)(n)=knsin(2nπ+kx)
( cos ⁡ k x ) ( n ) = k n cos ⁡ ( n π 2 + k x ) (\cos k x)^{(n)}=k^{n} \cos \left(\frac{n \pi}{2}+k x\right) (coskx)(n)=kncos(2nπ+kx)
( ln ⁡ x ) ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! x n (\ln x)^{(n)}=(-1)^{n-1} \frac{(n-1) !}{x^{n}} (lnx)(n)=(1)n1xn(n1)!
( 1 x ) ( n ) = ( − 1 ) n n ! x n + 1 \left(\frac{1}{x}\right)^{(n)}=(-1)^{n} \frac{n !}{x^{n+1}} (x1)(n)=(1)nxn+1n!
( 1 x + a ) ( n ) = ( − 1 ) n n ! ( x + a ) n + 1 \left(\frac{1}{x+a}\right)^{(n)}=(-1)^{n} \frac{n !}{(x+a)^{n+1}} (x+a1)(n)=(1)n(x+a)n+1n!
( x m ) ( n ) = m ( m − 1 ) ⋯ ( m − n + 1 ) x m − n \left(x^{m}\right)^{(n)}=m(m-1) \cdots(m-n+1) x^{m-n} (xm)(n)=m(m1)(mn+1)xmn
( u ± v ) ( n ) = u ( n ) ± v ( n ) (u \pm v)^{(n)}=u^{(n)} \pm v^{(n)} (u±v)(n)=u(n)±v(n)

复合函数求导法则

 设函数 z = f ( u , v ) z=f(u, v) z=f(u,v)可微 u = u ( x , y ) , v = v ( x , y ) u=u(x, y), \quad v=v(x, y) u=u(x,y),v=v(x,y)具有一阶偏导数,并且它们可以构成 , z z z关于 ( x , y ) (x,y) (x,y)在某区域D内的复合函数,则在D内有复合函数求导法则:
∂ z ∂ x = ∂ z ∂ u ⋅ ∂ u ∂ x + ∂ z ∂ v ⋅ ∂ v ∂ x \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} xz=uzxu+vzxv

∂ z ∂ y = ∂ z ∂ u ⋅ ∂ u ∂ y + ∂ z ∂ v ⋅ ∂ v ∂ y \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} yz=uzyu+vzyv

隐函数求导法则

  设函数 F ( x , y , z ) F(x, y, z) F(x,y,z) 在点 P 0 ( x 0 , y 0 , z 0 ) P_{0}\left(x_{0}, y_{0}, z_{0}\right) P0(x0,y0,z0) 的某邻域内有连续偏导数, 并且 F ( x 0 , y 0 , z 0 ) = 0 F\left(x_{0}, y_{0}, z_{0}\right)=0 F(x0,y0,z0)=0, F z ′ ( x 0 , y 0 , z 0 ) ≠ 0 , F_{z}^{\prime}\left(x_{0}, y_{0}, z_{0}\right) \neq 0, Fz(x0,y0,z0)=0, 则方程 F ( x 0 , y 0 , z 0 ) = 0 F\left(x_{0}, y_{0}, z_{0}\right)=0 F(x0,y0,z0)=0 在点 P 0 P_{0} P0 的某一邻域内恒能确定唯一的连续函数 z = f ( x , y ) z=f(x, y) z=f(x,y)满足:

  • z 0 = f ( x 0 , y 0 ) z_{0}=f\left(x_{0}, y_{0}\right) z0=f(x0,y0)
  • F ( x , y , f ( x , y ) ) ≡ 0 F(x, y, f(x, y)) \equiv 0 F(x,y,f(x,y))0
  • z = f ( x , y ) z=f(x, y) z=f(x,y) 具有连续偏导数
    则:
    ∂ z ∂ x = − F x ′ ( x , y , z ) F z ′ ( x , y , z ) \frac{\partial z}{\partial x}=-\frac{F_{x}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)} xz=Fz(x,y,z)Fx(x,y,z)
    ∂ z ∂ y = − F y ′ ( x , y , z ) F z ′ ( x , y , z ) \frac{\partial z}{\partial y}=-\frac{F_{y}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)} yz=Fz(x,y,z)Fy(x,y,z)

基本积分公式

∫ k d x = k x + C \int k d x=k x+C kdx=kx+C
∫ x μ d x = 1 μ + 1 ⋅ x μ + 1 + C ( μ ≠ − 1 ) \int x^{\mu} d x=\frac{1}{\mu+1} \cdot x^{\mu+1}+C(\mu \neq-1) xμdx=μ+11xμ+1+C(μ=1)
∫ d x x = ln ⁡ ∣ x ∣ + C \int \frac{d x}{x}=\ln |x|+C xdx=lnx+C

∫ cos ⁡ x d x = sin ⁡ x + C \int \cos x d x=\sin x+C cosxdx=sinx+C
∫ sin ⁡ x d x = − cos ⁡ x + C \int \sin x d x=-\cos x+C sinxdx=cosx+C
∫ d x cos ⁡ 2 x = ∫ sec ⁡ 2 x d x = tan ⁡ x + C \int \frac{d x}{\cos ^{2} x}=\int \sec ^{2} x d x=\tan x+C cos2xdx=sec2xdx=tanx+C
∫ d x sin ⁡ 2 x = ∫ csc ⁡ 2 x d x = − cot ⁡ x + C \int \frac{d x}{\sin ^{2} x}=\int \csc ^{2} x d x=-\cot x+C sin2xdx=csc2xdx=cotx+C
∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C \int \sec x \tan x d x=\sec x+C secxtanxdx=secx+C
∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C \int \csc x \cot x d x=-\csc x+C cscxcotxdx=cscx+C

∫ d x 1 + x 2 = arctan ⁡ x + C \int \frac{d x}{1+x^{2}}=\arctan x+C 1+x2dx=arctanx+C
∫ d x 1 − x 2 = arcsin ⁡ x + C \int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C 1x2 dx=arcsinx+C
∫ d x a 2 + x 2 = 1 a arctan ⁡ x a + C \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C a2+x2dx=a1arctanax+C
∫ d x a 2 − x 2 = arcsin ⁡ x a + C \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+C a2x2 dx=arcsinax+C
∫ d x x 2 − a 2 = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C \int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|+C x2a2dx=2a1lnx+axa+C
∫ d x a 2 − x 2 = 1 2 a ln ⁡ ∣ x + a x − a ∣ + C \int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \ln \left|\frac{x+a}{x-a}\right|+C a2x2dx=2a1lnxax+a+C
∫ d x x 2 + a 2 = ln ⁡ ( x + x 2 + a 2 ) + C \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C x2+a2 dx=ln(x+x2+a2 )+C
∫ d x x 2 − a 2 = ln ⁡ ∣ x + x 2 − a 2 ∣ + C \int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\ln \left|x+\sqrt{x^{2}-a^{2}}\right|+C x2a2 dx=lnx+x2a2 +C
∫ x 2 − x 2 d x = − x 2 a 2 − x 2 + a 2 2 arcsin ⁡ x a + C \int \sqrt{x^{2}-x^{2}} d x=-\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \arcsin \frac{x}{a}+C x2x2 dx=2xa2x2 +2a2arcsinax+C

∫ tan ⁡ x d x = ∫ sin ⁡ x cos ⁡ x d x = − ∫ d cos ⁡ x cos ⁡ x = − ln ⁡ ∣ cos ⁡ x ∣ + C \int \tan x d x=\int \frac{\sin x}{\cos x} d x=-\int \frac{d \cos x}{\cos x}=-\ln |\cos x|+C tanxdx=cosxsinxdx=cosxdcosx=lncosx+C
∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C \int \cot x d x=\ln |\sin x|+C cotxdx=lnsinx+C
∫ csc ⁡ x d x = ln ⁡ ∣ tan ⁡ x 2 ∣ + C = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C \int \csc x d x=\ln \left|\tan \frac{x}{2}\right|+C=\ln |\csc x-\cot x|+C cscxdx=lntan2x+C=lncscxcotx+C
∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int \sec x d x=\ln |\sec x+\tan x|+C secxdx=lnsecx+tanx+C

∫ e x d x = e x + C \int e^{x} d x=e^{x}+C exdx=ex+C
∫ a x d x = 1 ln ⁡ a a x + C \int a^{x} d x=\frac{1}{\ln a} a^{x}+C axdx=lna1ax+C

万能代换

u = tan ⁡ x 2 sin ⁡ x = 2 u 1 + u 2 cos ⁡ x = 1 − u 2 1 + u 2 d x = 2 1 + u 2 d u \begin{aligned} u &=\tan \frac{x}{2} \\ \sin x &=\frac{2 u}{1+u^{2}} \\ \cos x &=\frac{1-u^{2}}{1+u^{2}} \\ d x &=\frac{2}{1+u^{2}} d u \end{aligned} usinxcosxdx=tan2x=1+u22u=1+u21u2=1+u22du

万能代换可以将三角函数换成有理分式的形式来进行积分。

{ a 2 − x 2 → x = a sin ⁡ t a 2 + x 2 → x = atan ⁡ t x 2 − a 2 → x = asec ⁡ t \left\{\begin{array}{l}\sqrt{a^{2}-x^{2}} \rightarrow x=a \sin t \\ \sqrt{a^{2}+x^{2}} \rightarrow x=\operatorname{atan} t \\ \sqrt{x^{2}-a^{2}} \rightarrow x=\operatorname{asec} t\end{array}\right. a2x2 x=asinta2+x2 x=atantx2a2 x=asect

分部积分

∫ u d v = u v − ∫ v d u \int u d v=u v-\int v d u udv=uvvdu

级数定积分转换

{ ∑ i = 1 ∞ f ( i n ) 1 n = ∫ 0 1 f ( t ) d t ∑ i = 1 ∞ f ( x ⋅ i n ) x n = ∫ 0 x f ( t ) d t ∑ i = 1 ∞ f ( a + ( b − a ) ⋅ i n ) b − a n = ∫ a b f ( t ) d t \left\{\begin{array}{l}\sum_{i=1}^{\infty} f\left(\frac{i}{n}\right) \frac{1}{n}=\int_{0}^{1} f(t) d t \\ \sum_{i=1}^{\infty} f\left(\frac{x \cdot i}{n}\right) \frac{x}{n}=\int_{0}^{x} f(t) d t \\ \sum_{i=1}^{\infty} f\left(a+\frac{(b-a) \cdot i}{n}\right) \frac{b-a}{n}=\int_{a}^{b} f(t) d t\end{array}\right. i=1f(ni)n1=01f(t)dti=1f(nxi)nx=0xf(t)dti=1f(a+n(ba)i)nba=abf(t)dt

变限积分函数求导

F ( x ) = ∫ φ 1 ( x ) φ 2 ( x ) f ( t ) d t F(x)=\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(t) d t F(x)=φ1(x)φ2(x)f(t)dt
F ′ ( x ) = d d x [ ∫ φ 1 ( x ) φ 2 ( x ) f ( t ) d t ] = f [ φ 2 ( x ) ] φ 2 ′ ( x ) − f [ φ 1 ( x ) ] φ 1 ′ ( x ) F^{\prime}(x)=\frac{d}{d x}\left[\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(t) d t\right]=f\left[\varphi_{2}(x)\right] \varphi_{2}^{\prime}(x)-f\left[\varphi_{1}(x)\right] \varphi_{1}^{\prime}(x) F(x)=dxd[φ1(x)φ2(x)f(t)dt]=f[φ2(x)]φ2(x)f[φ1(x)]φ1(x)

二重积分

二重积分可以化为累次积分的定积分,表示曲顶柱体的体积。

∬ D f ( x , y ) d σ \iint_{D} f(x, y) d \sigma Df(x,y)dσ

= ∫ a x b x d x ∫ a y b y f ( x , y ) d y \stackrel{}{=} \int_{a_{x}}^{b_{x}} d x \int_{a_{y}}^{b_{y}} f(x, y) d y =axbxdxaybyf(x,y)dy

= ∫ a θ b θ d θ ∫ a r b r f ( r cos ⁡ θ , r sin ⁡ θ ) r d r =\int_{a_{\theta}}^{b_{\theta}} d \theta \int_{a_{r}}^{b_{r}} f(r \cos \theta, r \sin \theta) r d r =aθbθdθarbrf(rcosθ,rsinθ)rdr
∑ i = 1 ∞ ∑ j = 1 ∞ f ( i n , j n ) 1 n 2 = ∫ 0 1 ∫ 0 1 f ( x , y ) d x d y \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f\left(\frac{i}{n}, \frac{j}{n}\right) \frac{1}{n^{2}}=\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y i=1j=1f(ni,nj)n21=0101f(x,y)dxdy

三重积分

三重积分可以化为累次积分的定积分,表示空间区域 以密度 ρ = f ( x , y , z ) \rho=f(x, y, z) ρ=f(x,y,z)的质量。
∭ Ω f ( x , y , z ) d v = ∫ a x b x d x ∫ a y b y d y ∫ a z b z f ( x , y , z ) d z = ∫ a z b z d z ∬ D f ( x , y , z ) d σ = ∭ Ω f ( r cos ⁡ θ , r sin ⁡ θ , z ) r d r d θ = ∭ Ω f ( r sin ⁡ φ cos ⁡ θ , r sin ⁡ φ sin ⁡ θ , r cos ⁡ φ ) ⋅ r 2 sin ⁡ φ d r d φ d θ \begin{aligned} & \iiint_{\Omega} f(x, y, z) d v \\=& \int_{a_{x}}^{b_{x}} d x \int_{a_{y}}^{b_{y}} d y \int_{a_{z}}^{b_{z}} f(x, y, z) d z \\=& \int_{a_{z}}^{b_{z}} d z \iint_{D} f(x, y, z) d \sigma \\=& \iiint_{\Omega} f(r \cos \theta, r \sin \theta, z) r d r d \theta \\=& \iiint_{\Omega} f(r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi) \cdot r^{2} \sin \varphi d r d \varphi d \theta \end{aligned} ====Ωf(x,y,z)dvaxbxdxaybydyazbzf(x,y,z)dzazbzdzDf(x,y,z)dσΩf(rcosθ,rsinθ,z)rdrdθΩf(rsinφcosθ,rsinφsinθ,rcosφ)r2sinφdrdφdθ

常用泰勒公式

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2 !}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}+R_{n}(x) f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn(x)
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) ( n + 1 ) ξ ∈ ( x , x 0 ) R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1) !}\left(x-x_{0}\right)^{(n+1)} \xi \in\left(x, x_{0}\right) Rn(x)=(n+1)!f(n+1)(ξ)(xx0)(n+1)ξ(x,x0)
R n ( x ) = o [ ( x − x 0 ) n ] R_{n}(x)=o\left[\left(x-x_{0}\right)^{n}\right] Rn(x)=o[(xx0)n]
sin ⁡ x = x − x 3 3 ! + x 5 5 ! + ⋯ + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + o ( x 2 n + 1 ) \sin x=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) !}+o\left(x^{2 n+1}\right) sinx=x3!x3+5!x5++(1)n(2n+1)!x2n+1+o(x2n+1)
cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n ) \cos x=1-\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n) !}+o\left(x^{2 n}\right) cosx=12!x2+4!x4++(1)n(2n)!x2n+o(x2n)
e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ + x n n ! + o ( x n ) e^{x}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\cdots+\frac{x^{n}}{n !}+o\left(x^{n}\right) ex=1+x+2!x2+3!x3++n!xn+o(xn)
ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 + ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}+o\left(x^{n}\right) ln(1+x)=x2x2+3x3++(1)n1nxn+o(xn)
tan ⁡ x = x + x 3 3 + o ( x 3 ) \tan x=x+\frac{x^{3}}{3}+o\left(x^{3}\right) tanx=x+3x3+o(x3)
arcsin ⁡ x = x + x 3 3 ! + o ( x 3 ) \arcsin x=x+\frac{x^{3}}{3 !}+o\left(x^{3}\right) arcsinx=x+3!x3+o(x3)
arctan ⁡ x = x − x 3 3 + o ( x 3 ) \arctan x=x-\frac{x^{3}}{3}+o\left(x^{3}\right) arctanx=x3x3+o(x3)
( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + o ( x 2 ) (1+x)^{a}=1+a x+\frac{a(a-1)}{2 !} x^{2}+o\left(x^{2}\right) (1+x)a=1+ax+2!a(a1)x2+o(x2)

重要幂级数展开式

e x = ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ + x n n ! + ⋯   , − ∞ < x < + ∞ e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\cdots+\frac{x^{n}}{n !}+\cdots,-\inftyex=n=0n!xn=1+x+2!x2+3!x3++n!xn+,<x<+
1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − ⋯ + ( − 1 ) n x n + ⋯   , − 1 < x < 1 \frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-\cdots+(-1)^{n} x^{n}+\cdots,-11+x1=n=0(1)nxn=1x+x2+(1)nxn+,1<x<1
1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + ⋯ + x n + ⋯   , − 1 < x < 1 \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots+x^{n}+\cdots,-11x1=n=0xn=1+x+x2++xn+,1<x<1
ln ⁡ ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 x n n = x − x 2 2 + ⋯ + ( − 1 ) n − 1 x n n + ⋯   , − 1 < x ⩽ 1 \ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\cdots,-1ln(1+x)=n=1(1)n1nxn=x2x2++(1)n1nxn+,1<x1
sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = x − x 3 3 ! + ⋯ + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + ⋯   , − ∞ < x < + ∞ \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) !}=x-\frac{x^{3}}{3 !}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) !}+\cdots,-\inftysinx=n=0(1)n(2n+1)!x2n+1=x3!x3++(1)n(2n+1)!x2n+1+,<x<+
cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = 1 − x 2 2 ! + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + ⋯   , − ∞ < x < + ∞ \cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n) !}=1-\frac{x^{2}}{2 !}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n) !}+\cdots,-\inftycosx=n=0(1)n(2n)!x2n=12!x2++(1)n(2n)!x2n+,<x<+

无穷级数的和函数

{ ∑ n = 1 ∞ n x n − 1 = 1 ( 1 − x ) 2 ( − 1 < x < 1 ) ∑ n = 1 ∞ 1 n x n = − ln ⁡ ( 1 − x ) ( − 1 ⩽ x < 1 ) \left\{\begin{array}{ll}\sum_{n=1}^{\infty} n x^{n-1}=\frac{1}{(1-x)^{2}} & (-1{n=1nxn1=(1x)21n=1n1xn=ln(1x)(1<x<1)(1x<1)

傅里叶级数

f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) a 0 = 1 l ∫ − l l f ( x ) d x a n = 1 l ∫ − l l f ( x ) cos ⁡ n π x l d x b n = 1 l ∫ − l l f ( x ) sin ⁡ n π x l d x \begin{aligned} f(x) &=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right) \\ a_{0} &=\frac{1}{l} \int_{-l}^{l} f(x) d x \\ a_{n} &=\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} d x \\ b_{n} &=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} d x \end{aligned} f(x)a0anbn=2a0+n=1(ancoslnπx+bnsinlnπx)=l1llf(x)dx=l1llf(x)coslnπxdx=l1llf(x)sinlnπxdx

你可能感兴趣的:(机器学习数学基础,数学分析,机器学习)