想必大家已经对string有所了解了,string是专门用于字符串的。今天讲到的vector则是表示可变大小数组的序列容器。就像数组一样,vectoer也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。在之前我们学习c语言时使用数组,还需要通过malloc开辟,但现在使用vector,就不需要使用者再去开辟空间,它将自动处理。
本质来讲, vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。 总的来说就是:为了避免不必要的时间花费或者空间浪费,最开始开辟空间就尽量为后面开辟空间着想,在不同情况采用不同的策略。
前面也学过string,那么对于vector更是得心应手,当学习vector使用的时候你会发现基本上接口都是与string一样的。
目录
前言
一、stl_vector
二、vector的定义
2.1无参构造
2.2构造并初始化n个val
2.3使用迭代器进行初始化构造
2.4拷贝构造
三、vector iterator 的使用
3.1 begin + end与rbegin + rend的理解
3.2 begin + end
四、vector 空间增长问题
4.1 vs与g++代码对比
4.2 size+capacity+empty
4.3 reserve (重点)
4.4 resize(重点)
五、vector 增删查改
5.1push_back+pop_back (重点)
5.2 find
5.3 swap
5.4 insert
5.5 erase
5.6 operator[]
六、vector 迭代器失效问题。(重点)
6.1会引起其底层空间改变的操作,都有可能是迭代器失效
6.2指定位置元素的删除操作--erase
6.3在Linux下迭代器失效
我们先从原码进行观察它的主体结构,然后我们在实现的时候就可以按照源码的结构进行模拟。
在 stl_vector.h中,我们剥离出一部分代码,主体结构如下:
class vector {
public:........................
.................................
protected:
........
iterator start;
iterator finish;
iterator end_of_storage;........................................................
}
在源码中,我们发现这里是用的迭代器(iteartor),我们也不知道 start;finish; end_of_storage;是代表的什么意思,下面我们带入一副源码剖析图再进行理解:
通过源码剖析图,在处理数组的时候,start指向数组开始的位置,finish指向数组中内容最后的位置,end_of_storage指向的是数组开辟空间最大的位置。
我们在学vector时一定要学会查看文档:vector的文档介绍,vector在实际中非常的重要,在实际中我们熟悉常见的接口就可以,然后通过查找文档去学习重点掌握的接口。
--vector()(重点)
Example
vector
v; //无参构造
模拟实现
vector()
:_start(nullptr);
,_finish(nullptr);
,_endofstorage(nullptr)
{
};
--vector(size_type n, const value_type& val = value_type())
Example
int main()
{
vectorv1(4, 3); for (auto e : v1)
{
cout << e << " ";
++e;
}return 0;
}
结果:
3 3 3 3
模拟实现
vector(size_type n, const T& val = T())
:_start(nullptr)
, _finish(nullptr)
, _endofstorage(nullptr)
{
reserve(n);
for (size_t i = 0; i <= n; i++)
{
push_back(val);
}
}
--vector (InputIterator first, InputIterator last);
Example
vector
v(4, 10); vector
v1(v.begin(), v.end());
for (auto e : v1)
{
cout << e << " ";
++e;
}
结果:
10 10 10 10
模拟实现
template < class InputIterator>
vector(InputIterator first, InputIterator last)
:_start(nullptr)
, _finish(nullptr)
, _endofstorage(nullptr)
{
while (frist != last)
{
push_back(*frist);
++frist;
}
}
--vector (const vector& x); (重点)
Example
vector
v(4,3); vector
v1(v); for (auto e : v1)
{
cout << e << " ";
++e;
}
结果:
3 3 3 3
模拟实现
vector(const vector& v)
:_start(nullptr)
, _finish(nullptr)
, _endofstorage(nullptr)
{
vector tmp(v.begin(), v.end());
swap(tmp);
}
我们先重温一下迭代器(iterator)是一种可以遍历容器元素的数据类型。迭代器是一个变量,相当于容器和操纵容器的算法之间的中介。C++更趋向于使用迭代器而不是数组下标操作,因为标准库为每一种标准容器(如vector、map和list等)定义了一种迭代器类型,而只有少数容器(如vector)支持数组下标操作访问容器元素。可以通过迭代器指向你想访问容器的元素地址,通过*x打印出元素值。这和我们所熟知的指针极其类似。
C语言有指针,指针用起来十分灵活高效。
C++语言有迭代器,迭代器相对于指针而言功能更为丰富。
vector,是数组实现的,也就是说,只要知道数组的首地址,就能访问到后面的元素。所以,我们可以通过访问vector的迭代器来遍历vector容器元素。
通过图,我们发现获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置的iterator/const_iterator。
而rbegin与rend,获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的
reverse_iterator
Example
vector
v;
for (int i = 1; i <= 5; i++)
v.push_back(i);cout << *v.begin() << " ";
cout << *(v.end()-1) << " ";
结果:
1 5
模拟实现
iterator begin()
{
return _start;
}
iterator end()
{
return _finish;
}
capacity的代码在vs和g++下分别运行会发现,在vs2013中下capacity是按1.5倍增长的,g++是按2倍增长的。 这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义 的。vs是PJ版本STL,g++是SGI版本STL。
reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。
resize在开空间的同时还会进行初始化,影响size。
演示代码
void TestVectorExpand()
{
size_t sz;
vector v;
sz = v.capacity();
cout << "making v grow:\n";
for (int i = 0; i < 100; ++i)
{
v.push_back(i);
if (sz != v.capacity())
{
sz = v.capacity();
cout << "capacity changed: " << sz << '\n';
}
}
}
vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 3
capacity changed: 4
capacity changed: 6
capacity changed: 9
capacity changed: 13
capacity changed: 19
capacity changed: 28
capacity changed: 42
capacity changed: 63
capacity changed: 94
capacity changed: 141
g++运行结果:linux下使用的STL基本是按照2倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 4
capacity changed: 8
capacity changed: 16
capacity changed: 32
capacity changed: 64
capacity changed: 128
因为我们知道开辟空间是需要耗时的,比如当我们需要一个较大的空间时,我们已经确定vector中要存储元素大概个数,那么就可以提前将空间设置足,这样就避免边插入边扩容导致效率低下的问题了。我们就可以用reserve接口直接先开辟到我们所需要的数理即可,操作如下:
void TestVectorExpandOP()
{
vector v;
size_t sz = v.capacity();
v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容
cout << "making bar grow:\n";
for (int i = 0; i < 100; ++i)
{
v.push_back(i);
if (sz != v.capacity())
{
sz = v.capacity();
cout << "capacity changed: " << sz << '\n';
}
}
}
size 获取数据个数;capacity 获取容量大小;empty 判断是否为空
Example
void test_vector()
{
vectorv;
for (int i = 1; i <= 5; i++)
v.push_back(i);cout << v.size() << endl;
cout << v.capacity() << endl;
if (!v.empty())
cout << "NO empty" << endl;}
结果:
5 6 NO empty
模拟实现
iterator end()
{
return _finish;
}
size_t size() const
{
return _finish - _start;
}
bool empty() const
{
return _finish == _start;
}
size_t capacity() const
{
return _endofstorage - _start;
}
改变vector的capacity
Example
void test_vector6()
{
vectorv;
v.reserve(10);cout << v.size() << endl;
cout << v.capacity() << endl;}
结果:
0 10
模拟实现
我们在进行扩容的时候,我必须要保持原数据不变,当操作的时候记得拷贝当前数据即可。
void reserve(size_t n)
{
if (n > capacity())
{
size_t oldSize = size();
T* tmp = new T[n];
if (_start)
{
for (size_t i = 0; i < oldSize; i++)
{
tmp[i] = _start[i];
}
delete[] _start;
}
_start = tem;
_finish = tem + oldSize;
_endofstorage = _start + n;
}
}
改变vector的size
Example
void test_vector5()
{
vectorv;
for (int i = 1; i <= 5; i++)
v.push_back(i);cout << v.size() << endl;
cout << v.capacity() << endl;v.resize(4);
cout << v.size() << endl;
cout << v.capacity() << endl;
v.resize(14);cout << v.size() << endl;
cout << v.capacity() << endl;
}
模拟实现
当我们实现resize的时需要考虑几个情况:
1.当n大于capacity时,需要扩容
2.当n小于capacity且大于finish时,直接填充数据即可
3.当n小于finish时,删除数据
void resize(size_t n, T val = T())
{
if (n > _capacity)
{
reserve(n);
}
if (n > size())
{
while (_finish < _start + n)
{
*_finish = val;
++_finish;
}
}
else
{
_finish = _start + n;
}
}
在删除的时候需要注意的是,一般只改变finish的大小,而不去改变capacity的大小。因为我们很多时候减少了内存需要的时候又要开辟内存空间,现在计算机是有非常大内存--完全够用,减少内存空间是更加耗时的,用户是更加需要时间的,所以删的时候不改变capacity。
尾插+尾删
Example
void test_vector7()
{
vectorv;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);cout << v.size() << endl;
v.pop_back();
cout << v.size() << endl;
v.pop_back();
cout << v.size() << endl;
}
结果:
4 3 2
模拟实现
void push_back(const T& x)
{
if (_finish == _endofstorage)
{
size_t newCapacity = capacity() == 0 ? 4 : capacity() * 2;
reserve(newCapacity);
}
*_finish = x;
++_finish;
}
void pop_back()
{
assert(!empty);
--_finish;
}
查找。(注意这个是算法模块实现,不是vector的成员接口)
Example
void test_vector8()
{
vectorv;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
cout<<*find(v.begin(), v.end(), 3)<<" ";
cout << *find(v.begin(), v.end(), 4) << " ";
}
结果:
3 4
交换两个vector的数据空间
Example
void test_swap()
{
vectorv(4,3);
vectorv1(5, 4); v.swap(v1);
cout << v[0] << " ";
}
结果:
4
模拟实现
void swap(vector& v)
{
std::swap(_start, v._start);
std::swap(_finish, v._finish);
std::swap(_endofstorage, v._endofstorage);
}
在position之前插入val
Example
void test_insert()
{
vectorv(4, 3);
v.insert(v.begin(), 6);
v.insert(v.end(), 6);for (auto e : v)
{
cout << e << " ";
++e;
}
}
结果:
6 3 3 3 3 6
模拟实现
在模拟实现insert的时候会发生迭代器失效,迭代器失效实则就是扩容引起的野指针问题,实现insert有种特殊情况。当我们插入一个数据的时候,该数组是没有空间需要开辟空间,当开辟空间后pos如果不更新的话,还是指向的是原来的地址,那么当开辟后这个地址是会被操作系统回收,pos就会发生野指针的问题。
// 迭代器失效 : 扩容引起,野指针问题
iterator insert(iterator pos, const T& val)
{
assert(pos >= _start);
assert(pos <= _finish);
if (_finish == _endofstorage)
{
size_t len = pos - _start;
size_t newCapacity = capacity() == 0 ? 4 : capacity() * 2;
reserve(newCapacity);
// 扩容会导致pos迭代器失效,需要更新处理一下
pos = _start + len;
}
// 挪动数据
iterator end = _finish - 1;
while (end >= pos)
{
*(end + 1) = *end;
++end;
}
*pos = val;
++_finish;
return pos;
}
删除position位置的数据
Example
void test_erase()
{
vectorv;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
v.push_back(5);v.erase(v.begin());
for (auto e : v)
{
cout << e << " ";
++e;
}
cout << endl;v.erase(v.begin()+1);
for (auto e : v)
{
cout << e << " ";
++e;
}}
结果:
2 3 4 5
2 4 5
模拟实现
iterator erase(iterator pos)
{
assert(pos >= _start);
assert(pos < _finish);
iterator begin = pos + 1;
while (begin < _finish)
{
*(begin - 1) = *begin;
++begin;
}
--_finish;
return pos;
}
像数组一样访问
Example
void test_operator()
{
vectorv;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
v.push_back(5);for (size_t i = 0; i < v.size(); i++)
{
cout << v[i] << " ";
}
}
结果:
1 2 3 4 5
模拟实现
T& operator[](size_t pos)
{
assert(pos < size());
return _start[pos];
}
迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了 封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的 空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器, 程序可能会崩溃)。
如:resize、reserve、insert、assign、push_back等。
测试代码
#include
using namespace std;
#include
int main()
{
vector v{ 1, 2, 3, 4, 5, 6 };
auto it = v.begin();
v.assign(100, 8);
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
return 0;
}
将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
v.resize(100, 8);
reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
v.reserve(100);
插入元素期间,可能会引起扩容,而导致原空间被释放
v.insert(v.begin(), 0);
v.push_back(8);
给vector重新赋值,可能会引起底层容量改变
运行结果:
出错原因:
以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉, 而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。
解决方式:
在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。
修改后的代码
int main()
{
vector v{ 1, 2, 3, 4, 5, 6 };
v.assign(100, 8);
auto it = v.begin();
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
return 0;
}
运行结果:
下面代码用pos查找所找3位置的iterator,然后删除pos位置的数据,再去访问。这一例子就好比刻舟求剑一样。
测试代码
#include
using namespace std;
#include
int main()
{
int a[] = { 1, 2, 3, 4 };
vector v(a, a + sizeof(a) / sizeof(int));
// 使用find查找3所在位置的iterator
vector::iterator pos = find(v.begin(), v.end(), 3);
// 删除pos位置的数据,导致pos迭代器失效。
v.erase(pos);
cout << *pos << endl; // 此处会导致非法访问
return 0;
}
erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是 】没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效 了。
以下代码的功能是删除vector中所有的偶数,请问那个代码是正确的,为什么?
#include
using namespace std;
#include
int main()
{
vector v{ 1, 2, 3, 4 };
auto it = v.begin();
while (it != v.end())
{
if (*it % 2 == 0)
v.erase(it);
++it;
}
return 0;
}
int main()
{
vector v{ 1, 2, 3, 4 };
auto it = v.begin();
while (it != v.end())
{
if (*it % 2 == 0)
it = v.erase(it);
else
++it;
}
return 0;
}
代码二对,当用erase删除不是2的偶数it时,到最后还会出现野指针访问
当我们更新pos,将pos指向到删除的位置就不会错了,那么代码二就多做了这一步。
注意:Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。
1.扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{
vector v{ 1, 2, 3, 4, 5 };
for (size_t i = 0; i < v.size(); ++i)
cout << v[i] << " ";
cout << endl;
auto it = v.begin();
cout << "扩容之前,vector的容量为: " << v.capacity() << endl;
// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效
v.reserve(100);
cout << "扩容之后,vector的容量为: " << v.capacity() << endl;
// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会
// 虽然可能运行,但是输出的结果是不对的
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
return 0;
}
程序输出:
1 2 3 4 5
扩容之前,vector的容量为: 5
扩容之后,vector的容量为: 100 0 2 3 4 5 409 1 2 3 4 5
2.erase删除任意位置代码后,linux下迭代器并没有失效
因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
int main()
{
vector v{ 1, 2, 3, 4, 5 };
vector::iterator it = find(v.begin(), v.end(), 3);
v.erase(it);
cout << *it << endl;
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
return 0;
}
程序可以正常运行,并打印:
4 4 5
3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
此时迭代器是无效的,++it导致程序崩溃
int main()
{
vector v{ 1, 2, 3, 4, 5 };
// vector v{1,2,3,4,5,6};
auto it = v.begin();
while (it != v.end())
{
if (*it % 2 == 0)
v.erase(it);
++it;
}
for (auto e : v)
cout << e << " ";
cout << endl;
return 0;
}
========================================================
// 使用第一组数据时,程序可以运行
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out
1 3 5
=========================================================
// 使用第二组数据时,程序最终会崩溃
[sly@VM-0-3-centos 20220114]$ vim testVector.cpp [sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out Segmentation fault
从上述三个例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不 对,如果it不在begin和end范围内,肯定会崩溃的。
4. 与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效
#include
void TestString()
{
string s("hello");
auto it = s.begin();
// 放开之后代码会崩溃,因为resize到20会string会进行扩容
// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了
// 后序打印时,再访问it指向的空间程序就会崩溃
//s.resize(20, '!');
while (it != s.end())
{
cout << *it;
++it;
}
cout << endl;
it = s.begin();
while (it != s.end())
{
it = s.erase(it);
// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后
// it位置的迭代器就失效了
// s.erase(it);
++it;
}
}
迭代器失效解决办法:在使用前,对迭代器重新赋值即可。
完结!