- 电力知识图谱与大模型的结合:从构建到行业应用的深度解析
Cc不爱吃洋葱
知识图谱人工智能自然语言处理大模型大语言模型LLM语言模型
随着大数据和人工智能技术的飞速发展,电力行业迎来了智能化转型的全新契机。电力知识图谱作为一种将数据转化为结构化知识的技术,正在赋能故障诊断、设备管理、运维优化等核心场景。而当知识图谱与大模型相结合,更能释放强大的知识推理和智能预测能力,为行业智慧化发展注入新动力。本文将从专业视角,深入探讨电力知识图谱的构建过程、大模型的融入方法,以及它们在实际应用中的落地场景。通过具体案例剖析与技术解读,帮助你了
- 知识图谱智能应用系统:数据存储架构与流程解析
梦落青云
知识图谱架构人工智能
在当今数字化时代,知识图谱作为一种强大的知识表示和管理工具,正逐渐成为企业、科研机构以及各类智能应用的核心技术。知识图谱通过将数据转化为结构化的知识网络,不仅能够高效地存储和管理海量信息,还能通过复杂的查询和推理,为用户提供深度的知识洞察。然而,构建一个高效、灵活且可扩展的知识图谱系统并非易事,其中数据存储架构的设计尤为关键。本文将深入解析知识图谱智能应用系统中的数据存储架构,探讨如何通过分层存储
- 《Ollama 与 DeepSeek 整合应用入门指南》一、二、三章
Allen-Steven
ollamadeepseek
第一章:工具概述与核心价值1.1Ollama技术解析本地化部署优势:无需网络连接的数据隐私保护跨平台架构设计:支持Windows/macOS/Linux全平台模型管理引擎:自动化处理模型依赖与版本控制1.2DeepSeek模型特性多模态处理能力:文本生成、代码理解、数学推理中文优化架构:针对中文语料的特殊训练策略模型家族图谱:从1.3B到67B的参数规模选择1.3技术整合价值本地智能计算:企业数据
- 知识图谱neo4j—利用python进行知识入库
gcl_code
知识图谱neo4j知识图谱python
知识图谱neo4j—利用python进行知识入库知识图谱—利用python进行知识入库作为一个写sql出生的菜鸡,在这里分享一下去年11月到12月之间研究的关于知识图谱的课题相关知识,由于客户的原因最终该项目没有继续进行下去,但是有些经验还是可以跟大家分享一下,理论知识就不说了,很多人已经有类似的分享了,这边分享一个我自己用python写的导入neo4j的脚本,能达到1秒入库4000条左右记录数据
- 基于医疗知识图谱的问答系统 基于知识图谱的多轮问答 附完整代码数据详细教程
计算机毕设论文
深度学习-自然语言处理nlp医疗知识知识图谱Neo4j多轮问答
这个项目已实现的功能:1.闲聊类的单论对话2.基于知识图谱的多轮问答数据链接:链接:https://pan.baidu.com/s/1oPr1m8aaIeoMu53OIEULPg提取码:fh39一、项目来源由于之前用Rasa构建过对话系统,因此一直想脱离Rasa这个开源框架,从底层开始构建一个可以实现相似功能的对话系统,毕竟框架用的再溜,都不如自己做一遍。恰巧在Rasa群里看到了前辈分享的一个项目
- 知识图谱大模型系列之 11什么是 Neo4j LLM 知识图谱构建器?
知识大胖
NVIDIAGPU和大语言模型开发教程知识图谱neo4j人工智能llm
简介LLM知识图谱构建器是Neo4j的GraphRAG生态系统工具之一,可让您将非结构化数据转换为动态知识图谱。它与检索增强生成(RAG)聊天机器人集成,可实现自然语言查询和对数据的可解释洞察。推荐文章《使用ChatGPT从视频脚本创建知识图谱,使用GPT-4作为领域专家来帮助您从视频转录中提取知识(教程含完整源码)》权重2,知识图谱类《赋能知识图谱形成:利用BERTopic、DataMapPlo
- 大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统_bert+lstm
2301_76348014
程序员深度学习大数据知识图谱
文章目录大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介NavicatPremium15简介Layui简介Python语言介绍MySQL数据库深度学习六、核心理论贪心算法A
- 构建知识图谱之二(知识图谱构建技术)
tomlone
知识谱图知识图谱人工智能
ArchitectureofKnowledgeGraphConstructionTechniques知识图谱构建技术论文链接:https://acadpubl.eu/jsi/2018-118-19/articles/19b/24.pdf1.为什么我们需要构建知识图谱?构建知识图谱对于保险行业的意义在于它能够将分散的、复杂的行业数据连接起来,促进智能化决策、增强风险控制能力、提高效率并优化客户体验。
- 架构师技术图谱
modouwu
系统架构
分布式漫谈分布式系统大数据存储微服务可落地的DDD(6)-工程结构推荐系统框架消息队列编程语言设计模式重构集群
- 大模型prompt实例:知识库信息质量校验模块
写代码的中青年
大模型prompt人工智能python大模型LLM
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模型问答项目问答性能评估方法大模型数据侧总结大模型token等基本概念及参数和内存的关系大模型应用开发-华为大模型生态规划从零开始的LLaMA-Factory的指令增
- DeepSeek引爆AI核聚变:百亿智能体如何重构人类文明图谱?
KuaFuAI
人工智能重构Agent智能体
DeepSeek的横空出世,将加速数100亿AI智能体劳动力大军和新一轮AI革命,我们即将进入人类AI+产业的核聚变时刻。一、技术奇点已至:AI智能体开启"认知核裂变"DeepSeek的突破性进展,标志着AI智能体正式突破"感知智能"的临界点,进入"认知智能"的爆发期。通过自主研发的神经符号系统(Neuro-SymbolicArchitecture),AI智能体首次实现了对人类专家思维模式的解构与
- DeepSeek与核货宝订货系统的协同进化:智能商业范式重构
多用户商城系统
订货系统源码deepseek人工智能核货宝订货系统
数据处理与分析方面深度数据洞察:利用Deepseek强大的智能数据挖掘与分析能力,处理核货宝订货系统中的海量订单数据、客户数据、商品数据等。比如分析不同地区、不同时间、不同客户群体的订货偏好和趋势,为批发订货企业制定精准的采购、库存和销售策略提供依据。建立行业知识图谱:Deepseek可基于核货宝系统的数据及行业信息,构建批发行业知识图谱,清晰呈现企业、产品、客户、供应商等之间的关系和关联信息,帮
- 论文笔记《基于深度学习模型的药物-靶标结合亲和力预测》
I_dyllic
深度学习论文阅读深度学习人工智能
基于深度学习模型的药物-靶标结合亲和力预测这是一篇二区的文章,算是一个综述,记录一下在阅读过程中遇到的问题。文章目录基于深度学习模型的药物-靶标结合亲和力预测前言一、蛋白质接触图谱二、为什么蛋白质图谱的准确性对DTA模型预测结果没有影响1.对这段话的解释2.关于Alphafold3三、随机配体与随机配体节点属性(配体一般指药物)1.什么是随机配体与配体节点属性四、关于深度学习模型对特征的自动学习过
- DeepSeek底层揭秘——知识图谱与语料库的联邦学习架构
9命怪猫
知识图谱架构人工智能
目录1.知识图谱与语料库的联邦学习架构2.技术要素3.技术难点与挑战4.技术路径5.应用场景6.最新研究与技术进展7.未来趋势8.实际案例猫哥说1.知识图谱与语料库的联邦学习架构(1)定义“知识图谱与语料库的联邦学习架构”是一种结合知识图谱(KnowledgeGraph,KG)、语料库(Corpus)和联邦学习(FederatedLearning,FL)的分布式学习框架。其核心目标是通过联邦学习技
- 基于neo4j知识图谱+flask的大数据医疗领域知识问答系统(完整源码+源码解析+开发文档+视频讲解等资料
2401_84185074
neo4j知识图谱flask
1.classMedicalSpider::定义了一个名为MedicalSpider的类。2.def**init**(self)::这是类的构造函数,用于在创建类的实例时进行初始化。在初始化过程中,建立了与MongoDB数据库的连接,并选择了名为‘medical’的数据库和名为‘data’的集合。3.definsert\_data(self,data)::这是一个方法,用于插入数据到MongoDB
- 职场人AI突围战:解密DeepSeek的36种反内耗姿势
小momomo
人工智能
当你的周报被AI碾压,当同事用智能看板抢走升职机会,当00后实习生靠提示词工程赢得领导青睐——这个悄然降临的AI职场时代,正在重构我们的生存法则。**▍DeepSeek职场变形记**这不是你认知中的聊天机器人,而是一个会进化的数字同事:-**会议终结者**:自动生成带执行方案的会议纪要,智能识别7种无效讨论模型-**文档捕手**:跨平台抓取微信/钉钉/邮件文件,建立带知识图谱的智能档案馆-**数据
- 优化GPT API接口链接的方法
IPdodo全球网络服务
gpt
随着人工智能技术的飞速发展,GPT模型在自然语言处理领域中的应用越来越广泛。无论是在智能客服、自动化写作,还是在知识图谱的构建中,GPTAPI接口的高效调用和响应能力都成为了应用成功与否的关键。一、了解GPTAPI接口的基本工作原理在深入讨论优化策略之前,首先需要了解GPTAPI接口的基本工作原理。GPTAPI通过HTTP协议与用户系统进行通信,通常使用RESTfulAPI设计,客户端发送请求(如
- AI知识库和全文检索的区别
xixingzhe2
AI人工智能
1、AI知识库的作用AI知识库是基于人工智能技术构建的智能系统,能够理解、推理和生成信息。它的核心作用包括:1.1语义理解自然语言处理(NLP):AI知识库能够理解用户查询的语义,而不仅仅是关键词匹配。上下文关联:能够结合上下文信息,提供更准确的答案。1.2知识推理逻辑推理:通过知识图谱或预训练模型,AI知识库可以进行逻辑推理,回答复杂问题。多跳推理:能够从多个数据源中提取信息,综合生成答案。1.
- 【华为OD机试真题】177、发现新词的数量 / 知识图谱新词挖掘 | 机试真题+思路参考+代码解析(C++、Java、Py)
KJ.JK
OJ+最新华为OD机试(C++JavaPy)华为od知识图谱c++python发现新词的数量知识图谱新词挖掘
文章目录一、题目题目描述输入输出样例1样例2二、代码与思路参考C++语言思路C++代码Java语言思路Java代码Python语言思路Python代码作者:KJ.JK订阅本专栏后即可解锁在线OJ刷题权限个人博客首页:KJ.JK专栏介绍:2024年最新的华为OD机试真题B、C和D卷,使用C++、Java、Python语言进行解答,每个题目的思路分析都非常详细,支持在线OJ评测刷题!!!!订阅后获取权
- 计算机毕业设计hadoop+spark+hive新能源汽车数据分析可视化大屏 汽车推荐系统 新能源汽车推荐系统 汽车爬虫 汽车大数据 机器学习 大数据毕业设计 深度学习 知识图谱 人工智能
qq+593186283
hadoop大数据人工智能
(1)设计目的本次设计一个基于Hive的新能源汽车数据仓管理系统。企业管理员登录系统后可以在汽车保养时,根据这些汽车内置传感器传回的数据分析其故障原因,以便维修人员更加及时准确处理相关的故障问题。或者对这些数据分析之后向车主进行预警提示车主注意保养汽车,以提高汽车行驶的安全系数。(2)设计要求利用Flume进行分布式的日志数据采集,Kafka实现高吞吐量的数据传输,DateX进行数据清洗、转换和整
- DeLLMa框架:优化复杂决策的新路径
XianxinMao
人工智能
标题:DeLLMa框架:优化复杂决策的新路径文章信息摘要:DeLLMa框架通过整合大型语言模型(LLMs)和结构化数据,优化了在不确定性条件下的决策过程,特别是在处理复杂决策问题时,能够增强决策的严谨性和精确性。该框架利用LLMs处理非结构化文本数据的能力,结合结构化数据的定量分析,弥补了传统决策方法中的认知偏差和信息处理不足。通过引入知识图谱和定量分析技术,DeLLMa不仅提高了决策的透明度和可
- 知识图谱智能应用系统:数据分析与挖掘技术文档
光芒再现0394
知识图谱数据分析人工智能
一、概述在知识图谱智能应用系统中,数据分析与挖掘模块是实现知识发现和智能应用的核心环节。该模块负责处理和分析来自数据采集与预处理模块的结构化和半结构化数据,提取有价值的知识,并将其转化为可用于知识图谱构建和应用的三元组数据。本技术文档详细介绍了数据分析与挖掘模块中使用到的关键技术,包括SparkML、StanfordNLP、JNA、Jena、Python调用以及定时调度。二、技术栈介绍(一)Spa
- DeepSeek:知识图谱与大模型参数化知识融合的创新架构
deepseek
引言:AI领域的融合趋势在目前大模型与知识图谱作为两个重要的研究方向,各自展现出了强大的能力与潜力。大模型,凭借其在海量数据上的深度训练,拥有强大的语言理解与生成能力,能够处理多种自然语言处理任务,如文本生成、问答系统、机器翻译等,像GPT系列模型,一经推出便在全球范围内引起了广泛关注,展示了大模型在语言处理方面的卓越能力。知识图谱则以结构化的方式组织知识,清晰地展现了实体之间的关系,为智能应用提
- 【轻量级推荐算法框架】ReChorus 是一个高效、可扩展的轻量级推荐算法框架
繁华落尽,寻一世真情
推荐算法算法机器学习
ReChorus是一个高效、可扩展的轻量级推荐算法框架,基于PyTorch实现。该框架旨在解决推荐系统中算法实现细节、评价方式、数据集处理等方面的差异,帮助缓解可复现性问题。ReChorus实现了多种不同类型的推荐算法,包括常规推荐、序列推荐、引入知识图谱的推荐和引入时间动态性的推荐等,同时提供统一的预处理范式。主要特点和功能综合高效:ReChorus框架目前实现了13个不同的推荐算法,
- LangGraph入门教程
xnuscd
python
LangGraph教程:在LangChain中集成知识图谱目录简介前置条件环境配置安装必要的库创建知识图谱集成LangChain与知识图谱定义工具构建Agent类自定义模板和输出解析运行示例扩展与优化常见问题与故障排除总结简介LangGraph是一个结合LangChain与知识图谱(KnowledgeGraph)的应用,旨在通过结构化的知识库增强语言模型的理解和响应能力。通过将知识图谱与LangC
- 运维之专业术语(Professional Terminology for Pperation and Maintenance)
Linux运维老纪
勇敢向前迎接运维开发之挑战运维开发云计算服务器大数据数据库网络网络安全
运维之专业术语运维领域作为IT基础设施的中枢神经系统,其专业术语体系构成了一套完整的知识图谱。本文系统梳理了涵盖基础运维、云计算架构、自动化工程等领域的200个核心术语,为从业者构建完整的知识框架。一、基础设施层(30个)1.LVS(LinuxVirtualServer):基于Linux内核的四层负载均衡解决方案2.Bonding(链路聚合):物理网卡冗余与带宽叠加技术3.RHEL(RedHatE
- 课程知识图谱生成系统设计与实现
编程千纸鹤
Java项目实战专栏人工智能大数据知识图谱人工智能课程知识图谱
作者主页:编程千纸鹤作者简介:Java领域优质创作者、CSDN博客专家、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智
- 【kafka】kafka的动态配置管理使用和分析
石臻臻的杂货铺
Kafkakafka运维
该文章可能已过期,已不做勘误并更新,请访问原文地址(持续更新)Kafka中的动态配置源码分析kafka知识图谱:Kafka知识图谱大全kafka管控平台推荐使用滴滴开源的Kafka运维管控平台(戳我呀)更符合国人的操作习惯、更强大的管控能力、更高效的问题定位能力、更便捷的集群运维能力、更专业的资源治理、更友好的运维生态、BliBli视频:石臻臻的杂货铺kafka的动态配置文章目录源码分析1.Bro
- Unifying Large Language Models and Knowledge Graphs: A Roadmap综述笔记-入门-知识图谱KG-大模型LLM
笨cc
KG读论文语言模型知识图谱笔记
论文信息标题:UnifyingLargeLanguageModelsandKnowledgeGraphs:ARoadmap作者:ShiruiPan摘要LLMs,例如chatGPT和GPT4,由于其涌现能力和泛化性,对自然语言理解和人工智能领域产生了新的冲击。然而,LLMs是一个黑箱模型,往往缺乏捕获和获得事实知识。相反,知识图谱,例如维基百科等,是有结构模型。存储着丰富的事实知识。KGs可以通过提
- 【知识图谱增强】大模型应用架构:融合智能与数据的新纪元!
大模型入门教程
知识图谱架构人工智能语言模型大模型llamaAI大模型
1.引言最近OpenAI连续12天进行12场直播,发布新品。其中第八天介绍了ChatGPT搜索功能项全体用户开放。搜索增强大模型值得OpenAI安排一天专门介绍,和o1、ChatGPTVision等功能同等待遇,说明其意义重大。ChatGPT的外部搜索能力,使其不仅限于预训练的数据,而是可以实时访问和检索互联网的最新信息。这就是典型的知识增强大模型应用,通过外部知识的增强能够扩展大模型的能力,让其
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc