C++牛顿迭代法解非线性方程

牛顿迭代法算法:

思想:

把非线性方程无限分割为线性方程,利用线性方程斜率(导数)的三角关系迭代:

  1. 给定初始解x0
  2. 计算f(x0)和df(x0)
  3. 更新x0=x0 - ((f(x0)) / (df(x1)));
  4. 如果变化小于阈值或达到迭代次数结束
  5. 重复上述过程。

C++手撕牛顿迭代法

例:
用牛顿法求解方程f(x)=(x*e^x)-1=0在[0,1]内的一个实根,取初始点x0=0.5精度为e-5

//牛顿迭代解非线性方程组
#include 
#include 
using namespace std;

//非线性方程
double f(double x) {
	double f = x * exp(x) - 1;
	return f;
}
//求导
double df(double x) {
	double df = (x + 1) * exp(x);
	return df;
}

double EPS;
//迭代
double Newton(double x0)
{

	double x1 = 0;
	int itCount = 0;//迭代次数
	do
	{
		if (itCount)
			x0 = x1;

		x1 = x0 - ((f(x0)) / (df(x1)));
		cout << " 第" << ++itCount <<"次迭代后x="<<x1<< endl;
	} while (abs(x1 - x0) > EPS);

	return x1;

}

void main()
{

	double x;

	cout << " 请输入初值 x0: ";
	cin >> x;
	cout << "请输入EPS:";
	cin >> EPS;
	x = Newton(x);
	cout << " 达到计算精度使f(x)=0的解为: " << x << endl;
	cout << endl;
	system("pause");
}

C++牛顿迭代法解非线性方程_第1张图片

你可能感兴趣的:(算法,C++排雷,数据结构和算法,算法,线性代数,C++,c++)