功能强大的python包sklearn

1. sklearn简介

sklearn是基于python语言的机器学习工具包,是目前做机器学习项目当之无愧的第一工具。 sklearn自带了大量的数据集,可供我们练习各种机器学习算法。 sklearn集成了数据预处理、数据特征选择、数据特征降维、分类\回归\聚类模型、模型评估等非常全面算法。

2.sklearn数据类型

机器学习最终处理的数据都是数字,只不过这些数据可能以不同的形态被呈现出来,如矩阵、文字、图片、视频、音频等。

3.sklearn总览

功能强大的python包sklearn_第1张图片

数据集

功能强大的python包sklearn_第2张图片

sklearn.datasets

获取小数据集(本地加载):datasets.load_xxx( )

获取大数据集(在线下载):datasets.fetch_xxx( )

本地生成数据集(本地构造):datasets.make_xxx( )

数据集

介绍

load_iris( )

鸢尾花数据集:3类、4个特征、150个样本

load_boston( )

波斯顿房价数据集:13个特征、506个样本

load_digits( )

手写数字集:10类、64个特征、1797个样本

load_breast_cancer( )

乳腺癌数据集:2类、30个特征、569个样本

load_diabets( )

糖尿病数据集:10个特征、442个样本

load_wine( )

红酒数据集:3类、13个特征、178个样本

load_files( )

加载自定义的文本分类数据集

load_linnerud( )

体能训练数据集:3个特征、20个样本

load_sample_image( )

加载单个图像样本

load_svmlight_file( )

加载svmlight格式的数据

make_blobs( )

生成多类单标签数据集

make_biclusters( )

生成双聚类数据集

make_checkerboard( )

生成棋盘结构数组,进行双聚类

make_circles( )

生成二维二元分类数据集

make_classification( )

生成多类单标签数据集

make_friedman1( )

生成采用了多项式和正弦变换的数据集

make_gaussian_quantiles( )

生成高斯分布数据集

make_hastie_10_2( )

生成10维度的二元分类数据集

make_low_rank_matrix( )

生成具有钟形奇异值的低阶矩阵

make_moons( )

生成二维二元分类数据集

make_multilabel_classification( )

生成多类多标签数据集

make_regression( )

生成回归任务的数据集

make_s_curve( )

生成S型曲线数据集

make_sparse_coded_signal( )

生成信号作为字典元素的稀疏组合

make_sparse_spd_matrix( )

生成稀疏堆成的正定矩阵

make_sparse_uncorrelated( )

使用稀疏的不相关设计生成随机回归问题

make_spd_matrix( )

生成随机堆成的正定矩阵

make_swiss_roll( )

生成瑞士卷曲线数据集

数据集读取的部分代码:

from sklearn import datasets
import matplotlib.pyplot as plt

iris = datasets.load_iris()
features = iris.data
target = iris.target
print(features.shape,target.shape)
print(iris.feature_names)

boston = datasets.load_boston()
boston_features = boston.data
boston_target = boston.target
print(boston_features.shape,boston_target.shape)
print(boston.feature_names)

digits = datasets.load_digits()
digits_features = digits.data
digits_target = digits.target
print(digits_features.shape,digits_target.shape)

img = datasets.load_sample_image('flower.jpg')
print(img.shape)
plt.imshow(img)
plt.show()

data,target = datasets.make_blobs(n_samples=1000,n_features=2,centers=4,cluster_std=1)
plt.scatter(data[:,0],data[:,1],c=target)
plt.show()

data,target = datasets.make_classification(n_classes=4,n_samples=1000,n_features=2,n_informative=2,n_redundant=0,n_clusters_per_class=1)
print(data.shape)
plt.scatter(data[:,0],data[:,1],c=target)
plt.show()

x,y = datasets.make_regression(n_samples=10,n_features=1,n_targets=1,noise=1.5,random_state=1)
print(x.shape,y.shape)
plt.scatter(x,y)
plt.show()

数据预处理

功能强大的python包sklearn_第3张图片

sklearn.preprocessing

函数

功能

preprocessing.scale( )

标准化

preprocessing.MinMaxScaler( )

最大最小值标准化

preprocessing.StandardScaler( )

数据标准化

preprocessing.MaxAbsScaler( )

绝对值最大标准化

preprocessing.RobustScaler( )

带离群值数据集标准化

preprocessing.QuantileTransformer( )

使用分位数信息变换特征

preprocessing.PowerTransformer( )

使用幂变换执行到正态分布的映射

preprocessing.Normalizer( )

正则化

preprocessing.OrdinalEncoder( )

将分类特征转换为分类数值

preprocessing.LabelEncoder( )

将分类特征转换为分类数值

preprocessing.MultiLabelBinarizer( )

多标签二值化

preprocessing.OneHotEncoder( )

独热编码

preprocessing.KBinsDiscretizer( )

将连续数据离散化

preprocessing.FunctionTransformer( )

自定义特征处理函数

preprocessing.Binarizer( )

特征二值化

preprocessing.PolynomialFeatures( )

创建多项式特征

preprocesssing.Normalizer( )

正则化

preprocessing.Imputer( )

弥补缺失值

数据预处理代码

import numpy as np
from sklearn import preprocessing

#标准化:将数据转换为均值为0,方差为1的数据,即标注正态分布的数据
x = np.array([[1,-1,2],[2,0,0],[0,1,-1]])
x_scale = preprocessing.scale(x)
print(x_scale.mean(axis=0),x_scale.std(axis=0))

std_scale = preprocessing.StandardScaler().fit(x)
x_std = std_scale.transform(x)
print(x_std.mean(axis=0),x_std.std(axis=0))

#将数据缩放至给定范围(0-1)
mm_scale = preprocessing.MinMaxScaler()
x_mm = mm_scale.fit_transform(x)
print(x_mm.mean(axis=0),x_mm.std(axis=0))

#将数据缩放至给定范围(-1-1),适用于稀疏数据
mb_scale = preprocessing.MaxAbsScaler()
x_mb = mb_scale.fit_transform(x)
print(x_mb.mean(axis=0),x_mb.std(axis=0))

#适用于带有异常值的数据
rob_scale = preprocessing.RobustScaler()
x_rob = rob_scale.fit_transform(x)
print(x_rob.mean(axis=0),x_rob.std(axis=0))

#正则化
nor_scale = preprocessing.Normalizer()
x_nor = nor_scale.fit_transform(x)
print(x_nor.mean(axis=0),x_nor.std(axis=0))

#特征二值化:将数值型特征转换位布尔型的值
bin_scale = preprocessing.Binarizer()
x_bin = bin_scale.fit_transform(x)
print(x_bin)

#将分类特征或数据标签转换位独热编码
ohe = preprocessing.OneHotEncoder()
x1 = ([[0,0,3],[1,1,0],[1,0,2]])
x_ohe = ohe.fit(x1).transform([[0,1,3]])
print(x_ohe)


import numpy as np
from sklearn.preprocessing import PolynomialFeatures

x = np.arange(6).reshape(3,2)
poly = PolynomialFeatures(2)
x_poly = poly.fit_transform(x)
print(x)
print(x_poly)

import numpy as np
from sklearn.preprocessing import FunctionTransformer

#自定义的特征转换函数
transformer = FunctionTransformer(np.log1p)

x = np.array([[0,1],[2,3]])
x_trans = transformer.transform(x)
print(x_trans)

import numpy as np
import sklearn.preprocessing

x = np.array([[-3,5,15],[0,6,14],[6,3,11]])
kbd = preprocessing.KBinsDiscretizer(n_bins=[3,2,2],encode='ordinal').fit(x)
x_kbd = kbd.transform(x)
print(x_kbd)

from sklearn.preprocessing import MultiLabelBinarizer

#多标签二值化
mlb = MultiLabelBinarizer()
x_mlb = mlb.fit_transform([(1,2),(3,4),(5,)])
print(x_mlb)

sklearn.svm

函数

介绍

svm.OneClassSVM( )

无监督异常值检测

上述preprocessing类函数的方法如下:

http://preprocessing.xxx函数方法

介绍

xxx.fit( )

拟合数据

xxx.fit_transform( )

拟合并转换数据

xxx.get_params( )

获取函数参数

xxx.inverse_transform( )

逆转换

xxx.set_params( )

设置参数

xxx.transform( )

转换数据


特征选择

功能强大的python包sklearn_第4张图片

很多时候我们用于模型训练的数据集包含许多的特征,这些特征要么是有冗余,要么是对结果的相关性很小;这时通过精心挑选一些"好"的特征来训练模型,既能减小模型训练时间,也能够提升模型性能。

例如一个数据集包含(鼻翼长、眼角长、额头宽、血型)这四个特征;我们用这些数据集进行人脸识别,必定会去除(血型)这个特征后再进行人脸识别;因为(血型)这个特征对于人脸识别这个目标来说是一个无用的特征。

sklean.feature_selection

函数

功能

feature_selection.SelectKBest( ) feature_selection.chi2 feature_selection.f_regression feature_selection.mutual_info_regression

选择K个得分最高的特征

feature_selection.VarianceThreshold( )

无监督特征选择

feature_selection.REF( )

递归式特征消除

feature_selection.REFCV( )

递归式特征消除交叉验证法

feature_selection.SelectFromModel( )

特征选择

特征选择实现代码

from sklearn.datasets import load_digits
from sklearn.feature_selection import SelectKBest,chi2

digits = load_digits()
data = digits.data
target = digits.target
print(data.shape)
data_new = SelectKBest(chi2,k=20).fit_transform(data,target)
print(data_new.shape)

from sklearn.feature_selection import VarianceThreshold

x = [[0,0,1],[0,1,0],[1,0,0],[0,1,1],[0,1,0],[0,1,1]]
vt = VarianceThreshold(threshold=(0.8*(1-0.8)))
x_new = vt.fit_transform(x)
print(x)
print(x_new)

from sklearn.svm import LinearSVC
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectFromModel

iris = load_iris()
x,y = iris.data,iris.target

lsvc = LinearSVC(C=0.01,penalty='l1',dual=False).fit(x,y)
model = SelectFromModel(lsvc,prefit=True)
x_new = model.transform(x)

print(x.shape)
print(x_new.shape)

from sklearn.svm import SVC
from sklearn.model_selection import StratifiedKFold,cross_val_score
from sklearn.feature_selection import RFECV
from sklearn.datasets import load_iris

iris = load_iris()
x,y = iris.data,iris.target

svc = SVC(kernel='linear')
rfecv = RFECV(estimator=svc,step=1,cv=StratifiedKFold(2),scoring='accuracy',verbose=1,n_jobs=1).fit(x,y)
x_rfe = rfecv.transform(x)
print(x_rfe.shape)

clf = SVC(gamma="auto", C=0.8)   
scores = (cross_val_score(clf, x_rfe, y, cv=5))
print(scores)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std()*2))

特征降维

功能强大的python包sklearn_第5张图片

面对特征巨大的数据集,除了进行特征选择之外,我们还可以采取特征降维算法来减少特征数;特征降维于特征选择的区别在于:特征选择是从原始特征中挑选特征;而特征降维则是从原始特征中生成新的特征。

很多人会有比较特征选择与特征降维优劣的心理,其实这种脱离实际问题的比较意义不大,我们要明白每一种算法都是有其擅长的领域。

sklearn.decomposition

函数

功能

decomposition.PCA( )

主成分分析

decomposition.KernelPCA( )

核主成分分析

decomposition.IncrementalPCA( )

增量主成分分析

decomposition.MiniBatchSparsePCA( )

小批量稀疏主成分分析

decomposition.SparsePCA( )

稀疏主成分分析

decomposition.FactorAnalysis( )

因子分析

decomposition.TruncatedSVD( )

截断的奇异值分解

decomposition.FastICA( )

独立成分分析的快速算法

decomposition.DictionaryLearning( )

字典学习

decomposition.MiniBatchDictonaryLearning( )

小批量字典学习

decomposition.dict_learning( )

字典学习用于矩阵分解

decomposition.dict_learning_online( )

在线字典学习用于矩阵分解

decomposition.LatentDirichletAllocation( )

在线变分贝叶斯算法的隐含迪利克雷分布

decomposition.NMF( )

非负矩阵分解

decomposition.SparseCoder( )

稀疏编码

特征降维代码实现

"""数据降维"""

from sklearn.decomposition import PCA

x = np.array([[-1,-1],[-2,-1],[-3,-2],[1,1],[2,1],[3,2]])
pca1 = PCA(n_components=2)
pca2 = PCA(n_components='mle')
pca1.fit(x)
pca2.fit(x)
x_new1 = pca1.transform(x)
x_new2 = pca2.transform(x)
print(x_new1.shape)
print(x_new2.shape)

import numpy as np
from sklearn.decomposition import KernelPCA
import matplotlib.pyplot as plt
import math

#kernelPCA适用于对数据进行非线性降维
x = []
y = []
N = 500

for i in range(N):
    deg = np.random.randint(0,360)
    if np.random.randint(0,2)%2 == 0:
        x.append([6*math.sin(deg),6*math.cos(deg)])
        y.append(1)
    else:
        x.append([15*math.sin(deg),15*math.cos(deg)])
        y.append(0)
        
y = np.array(y)
x = np.array(x)

kpca = KernelPCA(kernel='rbf',n_components=14)
x_kpca = kpca.fit_transform(x)
print(x_kpca.shape)

from sklearn.datasets import load_digits
from sklearn.decomposition import IncrementalPCA
from scipy import sparse
X, _ = load_digits(return_X_y=True)

#增量主成分分析:适用于大数据
transform = IncrementalPCA(n_components=7,batch_size=200)
transform.partial_fit(X[:100,:])

x_sparse = sparse.csr_matrix(X)
x_transformed = transform.fit_transform(x_sparse)
x_transformed.shape

import numpy as np
from sklearn.datasets import make_friedman1
from sklearn.decomposition import MiniBatchSparsePCA

x,_ = make_friedman1(n_samples=200,n_features=30,random_state=0)
transformer = MiniBatchSparsePCA(n_components=5,batch_size=50,random_state=0)
transformer.fit(x)
x_transformed = transformer.transform(x)
print(x_transformed.shape)

from sklearn.datasets import load_digits
from sklearn.decomposition import FactorAnalysis

x,_ = load_digits(return_X_y=True)
transformer = FactorAnalysis(n_components=7,random_state=0)
x_transformed = transformer.fit_transform(x)
print(x_transformed.shape)

sklearn.manifold

函数

功能

manifold.LocallyLinearEmbedding( )

局部非线性嵌入

manifold.Isomap( )

流形学习

manifold.MDS( )

多维标度法

manifold.t-SNE( )

t分布随机邻域嵌入

manifold.SpectralEmbedding( )

频谱嵌入非线性降维


分类模型

功能强大的python包sklearn_第6张图片

分类模型是能够从数据集中学习知识,进而提升自我认知的一种模型,经过学习后,它能够区分出它所见过的事物;这种模型就非常类似一个识物的小朋友。

sklearn.tree

函数

功能

tree.DecisionTreeClassifier( )

决策树

决策树分类

from sklearn.datasets import load_iris
from sklearn import tree

x,y = load_iris(return_X_y=True)
clf = tree.DecisionTreeClassifier()
clf = clf.fit(x,y)
tree.plot_tree(clf)

sklearn.ensemble

函数

功能

ensemble.BaggingClassifier()

装袋法集成学习

ensemble.AdaBoostClassifier( )

提升法集成学习

ensemble.RandomForestClassifier( )

随机森林分类

ensemble.ExtraTreesClassifier( )

极限随机树分类

ensemble.RandomTreesEmbedding( )

嵌入式完全随机树

ensemble.GradientBoostingClassifier( )

梯度提升树

ensemble.VotingClassifier( )

投票分类法

BaggingClassifier

#使用sklearn库实现的决策树装袋法提升分类效果。其中X和Y分别是鸢尾花(iris)数据集中的自变量(花的特征)和因变量(花的类别)

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets

#加载iris数据集
iris=datasets.load_iris()
X=iris.data
Y=iris.target

#生成K折交叉验证数据
kfold=KFold(n_splits=9)

#决策树及交叉验证
cart=DecisionTreeClassifier(criterion='gini',max_depth=2)
cart=cart.fit(X,Y)
result=cross_val_score(cart,X,Y,cv=kfold)  #采用K折交叉验证的方法来验证算法效果
print('CART数结果:',result.mean())

#装袋法及交叉验证
model=BaggingClassifier(base_estimator=cart,n_estimators=100) #n_estimators=100为建立100个分类模型
result=cross_val_score(model,X,Y,cv=kfold)  #采用K折交叉验证的方法来验证算法效果
print('装袋法提升后的结果:',result.mean())

AdaBoostClassifier

#基于sklearn库中的提升法分类器对决策树进行优化,提高分类准确率,其中load_breast_cancer()方法加载乳腺癌数据集,自变量(细胞核的特征)和因变量(良性、恶性)分别赋给X,Y变量

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets

#加载数据
dataset_all=datasets.load_breast_cancer()
X=dataset_all.data
Y=dataset_all.target

#初始化基本随机数生成器
kfold=KFold(n_splits=10)

#决策树及交叉验证
dtree=DecisionTreeClassifier(criterion='gini',max_depth=3)

#提升法及交叉验证
model=AdaBoostClassifier(base_estimator=dtree,n_estimators=100)
result=cross_val_score(model,X,Y,cv=kfold)
print("提升法改进结果:",result.mean())

RandomForestClassifier 、ExtraTreesClassifier

#使用sklearn库中的随机森林算法和决策树算法进行效果比较,数据集由生成器随机生成


from sklearn.model_selection import cross_val_score
from sklearn.datasets import make_blobs
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt

#make_blobs:sklearn中自带的取类数据生成器随机生成测试样本,make_blobs方法中n_samples表示生成的随机数样本数量,n_features表示每个样本的特征数量,centers表示类别数量,random_state表示随机种子
x,y=make_blobs(n_samples=1000,n_features=6,centers=50,random_state=0)
plt.scatter(x[:,0],x[:,1],c=y)
plt.show()

#构造随机森林模型
clf=RandomForestClassifier(n_estimators=10,max_depth=None,min_samples_split=2,random_state=0)  #n_estimators表示弱学习器的最大迭代次数,或者说最大的弱学习器的个数。如果设置值太小,模型容易欠拟合;如果太大,计算量会较大,并且超过一定的数量后,模型提升很小
scores=cross_val_score(clf,x,y)
print('RandomForestClassifier result:',scores.mean())

#构造极限森林模型
clf=ExtraTreesClassifier(n_estimators=10,max_depth=None,min_samples_split=2,random_state=0)
scores=cross_val_score(clf,x,y)
print('ExtraTreesClassifier result:',scores.mean())
#极限随机数的效果好于随机森林,原因在于计算分割点方法中的随机性进一步增强;相较于随机森林,其阈值是针对每个候选特征随机生成的,并且选择最佳阈值作为分割规则,这样能够减少一点模型的方程,总体上效果更好

GradientBoostingClassifier

importpandasaspdfromsklearn.model_selectionimporttrain_test_splitfromsklearn.ensembleimportGradientBoostingClassifierfromsklearn.datasetsimportmake_blobs#make_blobs:sklearn中自带的取类数据生成器随机生成测试样本,make_blobs方法中n_samples表示生成的随机数样本数量,n_features表示每个样本的特征数量,centers表示类别数量,random_state表示随机种子x,y=make_blobs(n_samples=1000,n_features=6,centers=50,random_state=0)plt.scatter(x[:,0],x[:,1],c=y)plt.show()x_train,x_test,y_train,y_test=train_test_split(x,y)# 模型训练,使用GBDT算法gbr=GradientBoostingClassifier(n_estimators=3000,max_depth=2,min_samples_split=2,learning_rate=0.1)gbr.fit(x_train,y_train.ravel())y_gbr=gbr.predict(x_train)y_gbr1=gbr.predict(x_test)acc_train=gbr.score(x_train,y_train)acc_test=gbr.score(x_test,y_test)print(acc_train)print(acc_test)

VotingClassifier

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.ensemble import VotingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

#VotingClassifier方法是一次使用多种分类模型进行预测,将多数预测结果作为最终结果
x,y = datasets.make_moons(n_samples=500,noise=0.3,random_state=42)

plt.scatter(x[y==0,0],x[y==0,1])
plt.scatter(x[y==1,0],x[y==1,1])
plt.show()

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)

voting_hard = VotingClassifier(estimators=[
    ('log_clf', LogisticRegression()),
    ('svm_clf', SVC()),
    ('dt_clf', DecisionTreeClassifier(random_state=10)),], voting='hard')

voting_soft = VotingClassifier(estimators=[
    ('log_clf', LogisticRegression()),
    ('svm_clf', SVC(probability=True)),
    ('dt_clf', DecisionTreeClassifier(random_state=10)),
], voting='soft')

voting_hard.fit(x_train,y_train)
print(voting_hard.score(x_test,y_test))

voting_soft.fit(x_train,y_train)
print(voting_soft.score(x_test,y_test))

sklearn.linear_model

函数

功能

linear_model.LogisticRegression( )

逻辑回归

linear_model.Perceptron( )

线性模型感知机

linear_model.SGDClassifier( )

具有SGD训练的线性分类器

linear_model.PassiveAggressiveClassifier( )

增量学习分类器

LogisticRegression

import numpy as np
from sklearn import linear_model,datasets
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
x = iris.data
y = iris.target

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)

logreg = linear_model.LogisticRegression(C=1e5)
logreg.fit(x_train,y_train)

prepro = logreg.score(x_test,y_test)
print(prepro)

Perceptron

from sklearn.datasets import load_digits
from sklearn.linear_model import Perceptron

x,y = load_digits(return_X_y=True)
clf = Perceptron(tol=1e-3,random_state=0)
clf.fit(x,y)
clf.score(x,y)

SGDClassifier

import numpy as np
from sklearn.linear_model import SGDClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline

x = np.array([[-1,-1],[-2,-1],[1,1],[2,1]])
y = np.array([1,1,2,2])

clf = make_pipeline(StandardScaler(),SGDClassifier(max_iter=1000,tol=1e-3))
clf.fit(x,y)
print(clf.score(x,y))
print(clf.predict([[-0.8,-1]]))

PassiveAggressiveClassifier

from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

x,y = make_classification(n_features=4,random_state=0)
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)

clf = PassiveAggressiveClassifier(max_iter=1000,random_state=0,tol=1e-3)
clf.fit(x_train,y_train)
print(clf.score(x_test,y_test))

sklearn.svm

函数

功能

svm.SVC( )

支持向量机分类

svm.NuSVC( )

Nu支持向量分类

svm.LinearSVC( )

线性支持向量分类

SVC

import numpy as np
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC

x = [[2,0],[1,1],[2,3]]
y = [0,0,1]

clf = SVC(kernel='linear')
clf.fit(x,y)
print(clf.predict([[2,2]]))

NuSVC

from sklearn import svm
from numpy import *

x = array([[0],[1],[2],[3]])
y = array([0,1,2,3])

clf = svm.NuSVC()
clf.fit(x,y)
print(clf.predict([[4]]))

LinearSVC

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.svm import LinearSVC

iris = datasets.load_iris()
X = iris.data
y = iris.target

plt.scatter(X[y==0, 0], X[y==0, 1], color='red')
plt.scatter(X[y==1, 0], X[y==1, 1], color='blue')
plt.show()

svc = LinearSVC(C=10**9)
svc.fit(X, y)
print(svc.score(X,y))

sklearn.neighbors

函数

功能

neighbors.NearestNeighbors( )

无监督学习临近搜索

neighbors.NearestCentroid( )

最近质心分类器

neighbors.KNeighborsClassifier()

K近邻分类器

neighbors.KDTree( )

KD树搜索最近邻

neighbors.KNeighborsTransformer( )

数据转换为K个最近邻点的加权图

NearestNeighbors

import numpy as np
from sklearn.neighbors import NearestNeighbors

samples = [[0,0,2],[1,0,0],[0,0,1]]
neigh = NearestNeighbors(n_neighbors=2,radius=0.4)
neigh.fit(samples)

print(neigh.kneighbors([[0,0,1.3]],2,return_distance=True))
print(neigh.radius_neighbors([[0,0,1.3]],0.4,return_distance=False))

NearestCentroid

from sklearn.neighbors import NearestCentroid
import numpy as np

x = np.array([[-1,-1],[-2,-1],[-3,-2],[1,1],[2,1],[3,2]])
y = np.array([1,1,1,2,2,2])

clf = NearestCentroid()
clf.fit(x,y)
print(clf.predict([[-0.8,-1]]))

KNeighborsClassifier

from sklearn.neighbors import KNeighborsClassifier

x,y = [[0],[1],[2],[3]],[0,0,1,1]

neigh = KNeighborsClassifier(n_neighbors=3)
neigh.fit(x,y)
print(neigh.predict([[1.1]]))

KDTree

import numpy as np
from sklearn.neighbors import KDTree
rng = np.random.RandomState(0)
x = rng.random_sample((10,3))
tree = KDTree(x,leaf_size=2)
dist,ind = tree.query(x[:1],k=3)
print(ind)

KNeighborsClassifier

from sklearn.neighbors import KNeighborsClassifier
 
X = [[0], [1], [2], [3], [4], [5], [6], [7], [8]]
y = [0, 0, 0, 1, 1, 1, 2, 2, 2]
 
neigh = KNeighborsClassifier(n_neighbors=3)
neigh.fit(X, y)
print(neigh.predict([[1.1]]))

sklearn.discriminant_analysis

函数

功能

discriminant_analysis.LinearDiscriminantAnalysis( )

线性判别分析

discriminant_analysis.QuadraticDiscriminantAnalysis( )

二次判别分析

LDA

from sklearn import datasets
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA

iris = datasets.load_iris()
X = iris.data[:-5]
pre_x = iris.data[-5:]
y = iris.target[:-5]
print ('first 10 raw samples:', X[:10])
clf = LDA()
clf.fit(X, y)
X_r = clf.transform(X)
pre_y = clf.predict(pre_x)
#降维结果
print ('first 10 transformed samples:', X_r[:10])
#预测目标分类结果
print ('predict value:', pre_y)

QDA

from sklearn import datasets
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis as QDA
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()

x = iris.data
y = iris.target

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)

clf = QDA()
clf.fit(x_train,y_train)
print(clf.score(x_test,y_test))

sklearn.gaussian_process

函数

功能

gaussian_process.GaussianProcessClassifier( )

高斯过程分类

sklearn.naive_bayes

函数

功能

naive_bayes.GaussianNB( )

朴素贝叶斯

naive_bayes.MultinomialNB( )

多项式朴素贝叶斯

naive_bayes.BernoulliNB( )

伯努利朴素贝叶斯

GaussianNB

from sklearn import datasets
from sklearn.naive_bayes import GaussianNB

iris = datasets.load_iris()
clf = GaussianNB()
clf = clf.fit(iris.data,iris.target)

y_pre = clf.predict(iris.data)

MultinomialNB

from sklearn import datasets
from sklearn.naive_bayes import MultinomialNB

iris = datasets.load_iris()
clf = MultinomialNB()
clf = clf.fit(iris.data, iris.target)
y_pred=clf.predict(iris.data)

BernoulliNB

from sklearn import datasets
from sklearn.naive_bayes import BernoulliNB

iris = datasets.load_iris()
clf = BernoulliNB()
clf = clf.fit(iris.data, iris.target)
y_pred=clf.predict(iris.data)

回归模型

功能强大的python包sklearn_第7张图片

sklearn.tree

函数

功能

tree.DecisionTreeRegress( )

回归决策树

tree.ExtraTreeRegressor( )

极限回归树

DecisionTreeRegressor、ExtraTreeRegressor

"""回归"""

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor,ExtraTreeRegressor
from sklearn.metrics import r2_score,mean_squared_error,mean_absolute_error
import numpy as np

boston = load_boston()
x = boston.data
y = boston.target

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)

dtr = DecisionTreeRegressor()
dtr.fit(x_train,y_train)

etr = ExtraTreeRegressor()
etr.fit(x_train,y_train)

yetr_pred = etr.predict(x_test)
ydtr_pred = dtr.predict(x_test)

print(dtr.score(x_test,y_test))
print(r2_score(y_test,ydtr_pred))

print(etr.score(x_test,y_test))
print(r2_score(y_test,yetr_pred))

sklearn.ensemble

函数

功能

ensemble.GradientBoostingRegressor( )

梯度提升法回归

ensemble.AdaBoostRegressor( )

提升法回归

ensemble.BaggingRegressor( )

装袋法回归

ensemble.ExtraTreeRegressor( )

极限树回归

ensemble.RandomForestRegressor( )

随机森林回归

GradientBoostingRegressor

import numpy as np
from sklearn.ensemble import GradientBoostingRegressor as GBR
from sklearn.datasets import make_regression

X, y = make_regression(1000, 2, noise=10)

gbr = GBR()
gbr.fit(X, y)
gbr_preds = gbr.predict(X)

AdaBoostRegressor

from sklearn.ensemble import AdaBoostRegressor
from sklearn.datasets import make_regression

x,y = make_regression(n_features=4,n_informative=2,random_state=0,shuffle=False)
regr = AdaBoostRegressor(random_state=0,n_estimators=100)
regr.fit(x,y)
regr.predict([[0,0,0,0]])

BaggingRegressor

from sklearn.ensemble import BaggingRegressor
from sklearn.datasets import make_regression
from sklearn.svm import SVR

x,y = make_regression(n_samples=100,n_features=4,n_informative=2,n_targets=1,random_state=0,shuffle=False)
br = BaggingRegressor(base_estimator=SVR(),n_estimators=10,random_state=0).fit(x,y)
br.predict([[0,0,0,0]])

ExtraTreesRegressor

from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
from sklearn.ensemble import ExtraTreesRegressor

x,y = load_diabetes(return_X_y=True)
x_train,x_test,y_train,y_test = train_test_split(X,y,random_state=0)

etr = ExtraTreesRegressor(n_estimators=100,random_state=0).fit(x_train,y_train)
print(etr.score(x_test,y_test))

RandomForestRegressor

from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import make_regression

x,y = make_regression(n_features=4,n_informative=2,random_state=0,shuffle=False)

rfr = RandomForestRegressor(max_depth=2,random_state=0)
rfr.fit(x,y)
print(rfr.predict([[0,0,0,0]]))

sklearn.linear_model

函数

功能

linear_model.LinearRegression( )

线性回归

linear_model.Ridge( )

岭回归

linear_model.Lasso( )

经L1训练后的正则化器

linear_model.ElasticNet( )

弹性网络

linear_model.MultiTaskLasso( )

多任务Lasso

linear_model.MultiTaskElasticNet( )

多任务弹性网络

linear_model.Lars( )

最小角回归

linear_model.OrthogonalMatchingPursuit( )

正交匹配追踪模型

linear_model.BayesianRidge( )

贝叶斯岭回归

linear_model.ARDRegression( )

贝叶斯ADA回归

linear_model.SGDRegressor( )

随机梯度下降回归

linear_model.PassiveAggressiveRegressor( )

增量学习回归

linear_model.HuberRegression( )

Huber回归

import numpy as np
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso

np.random.seed(0)
x = np.random.randn(10,5)
y = np.random.randn(10)
clf1 = Ridge(alpha=1.0)
clf2 = Lasso()
clf2.fit(x,y)
clf1.fit(x,y)
print(clf1.predict(x))
print(clf2.predict(x))

sklearn.svm

函数

功能

svm.SVR( )

支持向量机回归

svm.NuSVR( )

Nu支持向量回归

svm.LinearSVR( )

线性支持向量回归

sklearn.neighbors

函数

功能

neighbors.KNeighborsRegressor( )

K近邻回归

neighbors.RadiusNeighborsRegressor( )

基于半径的近邻回归

sklearn.kernel_ridge

函数

功能

kernel_ridge.KernelRidge( )

内核岭回归

sklearn.gaussian_process

函数

功能

gaussian_process.GaussianProcessRegressor( )

高斯过程回归

GaussianProcessRegressor

from sklearn.datasets import make_friedman2
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import DotProduct,WhiteKernel

x,y = make_friedman2(n_samples=500,noise=0,random_state=0)

kernel = DotProduct()+WhiteKernel()
gpr = GaussianProcessRegressor(kernel=kernel,random_state=0).fit(x,y)
print(gpr.score(x,y))

sklearn.cross_decomposition

函数

功能

cross_decomposition.PLSRegression( )

偏最小二乘回归

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cross_decomposition import PLSRegression
from sklearn.model_selection import train_test_split

boston = datasets.load_boston()

x = boston.data
y = boston.target

x_df = pd.DataFrame(x,columns=boston.feature_names)
y_df = pd.DataFrame(y)

pls = PLSRegression(n_components=2)

x_train,x_test,y_train,y_test = train_test_split(x_df,y_df,test_size=0.3,random_state=1)

pls.fit(x_train,y_train)
print(pls.predict(x_test))

聚类模型

功能强大的python包sklearn_第8张图片

sklearn.cluster

函数

功能

cluster.DBSCAN( )

基于密度的聚类

cluster.GaussianMixtureModel( )

高斯混合模型

cluster.AffinityPropagation( )

吸引力传播聚类

cluster.AgglomerativeClustering( )

层次聚类

cluster.Birch( )

利用层次方法的平衡迭代聚类

cluster.KMeans( )

K均值聚类

cluster.MiniBatchKMeans( )

小批量K均值聚类

cluster.MeanShift( )

平均移位聚类

cluster.OPTICS( )

基于点排序来识别聚类结构

cluster.SpectralClustering( )

谱聚类

cluster.Biclustering( )

双聚类

cluster.ward_tree( )

集群病房树

模型方法

方法

功能

xxx.fit( )

模型训练

xxx.get_params( )

获取模型参数

xxx.predict( )

预测新输入数据

xxx.score( )

评估模型分类/回归/聚类模型

xxx.set_params( )

设置模型参数


模型评估

功能强大的python包sklearn_第9张图片

分类模型评估

函数

功能

metrics.accuracy_score( )

准确率

metrics.average_precision_score( )

平均准确率

metrics.log_loss( )

对数损失

metrics.confusion_matrix( )

混淆矩阵

metrics.classification_report( )

分类模型评估报告:准确率、召回率、F1-score

metrics.roc_curve( )

受试者工作特性曲线

metrics.auc( )

ROC曲线下面积

metrics.roc_auc_score( )

AUC值

回归模型评估

函数

功能

metrics.mean_squared_error( )

平均决定误差

metrics.median_absolute_error( )

中值绝对误差

metrics.r2_score( )

决定系数

聚类模型评估

函数

功能

metrics.adjusted_rand_score( )

随机兰德调整指数

metrics.silhouette_score( )

轮廓系数


模型优化

函数

功能

model_selection.cross_val_score( )

交叉验证

model_selection.LeaveOneOut( )

留一法

model_selection.LeavePout( )

留P法交叉验证

model_selection.GridSearchCV( )

网格搜索

model_selection.RandomizedSearchCV( )

随机搜索

model_selection.validation_curve( )

验证曲线

model_selection.learning_curve( )

学习曲线

写在最后

单纯的通过文章来学习机器学习、学习编程是很容易遇到非常多的Bug,这对一个新手来说,无疑会浪费很多时间,也会打击大家学习掌握机器学习的信心。

利用sklearn库来学习机器学习,是能够非常快速的入门的。

你可能感兴趣的:(Python,skleanr,python)