week6&7(2021.10.23-2021.11.5)

Step1

一.RNN:递归神经网络

    在输入和输出都为序列时候常用                

          例如:语音识别(音频到文字),翻译(汉语文字到英语文字)

循环神经网络的数据是循环传递的,输入x经过隐含层到输出y,在隐含层的结果h也会作为下次输入的一部分,循环往复,如下图所示:

week6&7(2021.10.23-2021.11.5)_第1张图片

第一层x0为输入,y0为输出

第二层x1和h0为输入,y1为输出

...   ...   ...

h0,h1等隐藏向量的目的:提高网络的记忆力,为了重视序列信息(举个例子:图片很容易分辨出狗和长颈鹿,不需要对之前的输入有记忆能力,但是在预测文字的时候,比如:想预测“我爱吃饭”,输入了“我爱吃”,程序应该输出“饭”,这就是记忆能力的体现。反例:输入了“吃饭爱”,程序输出了“我”。所以反例是错误的)

week6&7(2021.10.23-2021.11.5)_第2张图片

 隐藏向量不断地循环传递信息,因此叫做循环神经网络

二.LSTM的概念

LSTM(Long-short Term Memory)叫做长短期记忆网络,为RNN的改进版本,解决了RNN的“梯度消失”的问题(更好地记忆力)

在RNN中,先输入的会被遗忘的快,而LSTM弥补了这个缺点

week6&7(2021.10.23-2021.11.5)_第3张图片

 简单来说,就是多了一个隐藏向量c  即:(h0,c0),(h1,c1)......

Step2 

参考:以一个简单的RNN为例梳理神经网络的训练过程 - 简书 (jianshu.com)

一.RNN实现sin预测cos

import torch
from torch import nn
# import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
import numpy as np

torch.manual_seed(1)  # reproducible

# Hyper Parameters
TIME_STEP = 10  # rnn time step
INPUT_SIZE = 1  # rnn input size
LR = 0.02  # learning rate


class RNN(nn.Module):
    def __init__(self):
        super(RNN, self).__init__()
        self.rnn = nn.RNN(
            input_size=INPUT_SIZE,
            hidden_size=32,
            num_layers=1,      #表示多少个rnn堆在一起,1就代表只有1个
            batch_first=True   #把batch_size提前
        )
        self.out = nn.Linear(32, 1)

    def forward(self, x, h_state):

        # x (batch, time_step, input_size)
        # h_state (n_layers, batch, hidden_size)
        # r_out (batch, time_step, hidden_size)
        r_out, h_state = self.rnn(x, h_state)
        outs = []
        for time_step in range(r_out.size(1)):
            outs.append(self.out(r_out[:, time_step, :]))
        return torch.stack(outs, dim=1), h_state       #知识点


rnn = RNN()
# print(rnn)

optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)  # optimize all cnn parameters         #Adam在week2&3有写
loss_func = nn.MSELoss()
h_state = None      #初始化数据

plt.figure(1, figsize=(12, 5))
plt.ion()

for step in range(300):
    start, end = step * np.pi, (step + 1)*np.pi  # 开始和结束的范围,这里的pi代表π
    # use sin predicts cos
    steps = np.linspace(start, end, TIME_STEP, dtype=np.float32)  # 生成 input 数据和 output 数据, TIME_STEP为10
    x_np = np.sin(steps)                  #这里的steps指的是作图时候的横坐标
    y_np = np.cos(steps)

    x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis])  # shape (batch, time_step, input_size)   #np.newaxis是选取增加维度
    y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis])

    prediction, h_state = rnn(x, h_state)     #每个step输出的结果为prediction
    # print(h_state)
    h_state = h_state.data     #传回去进行迭代
    # print(h_state)

    loss = loss_func(prediction, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    plt.plot(steps, y_np.flatten(), 'r-')
    plt.plot(steps, prediction.data.numpy().flatten(), 'b-')
    plt.draw()
    plt.pause(0.05)

plt.ioff()
plt.show()
print('loss=%.4f' % loss.item())

知识点:

1.torch.manual_seed(1)

【pytorch】torch.manual_seed()用法详解_XavierJ的博客-CSDN博客

2.batch_first=True

Pytorch的参数“batch_first”的理解 - 简书 (jianshu.com)

3.num_layers=1, #表示多少个rnn堆在一起,1就代表只有1个

pytorch中RNN参数的详细解释_lwgkzl的博客-CSDN博客_pytorch rnn

4.torch.append()

Python学习高光时刻记录1——(append,torch.zeros,torch.ones,torch.log,torch.from_numpy)_快乐的小虾米的博客-CSDN博客

5.torch.stack()

pytorch中torch.stack()函数总结_RealCoder的博客-CSDN博客_python torch.stack

6.torch.form_numpy()

pytorch中的torch.from_numpy()_tyler的博客-CSDN博客

7.np.newaxis()

关于python 中np.newaxis的用法_fei-CSDN博客_newaxis

8.flatten()

Python中flatten( )函数及函数用法详解 - yvonnes - 博客园 (cnblogs.com)

结果:

week6&7(2021.10.23-2021.11.5)_第4张图片

week6&7(2021.10.23-2021.11.5)_第5张图片

 二.LSTM实现sin预测cos

1.代码

#coding=utf-8

import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt

INPUT_SIZE=1

steps = np.linspace(0, np.pi*2, 100, dtype=np.float32)      #0到100按照2π等分,开始到结束
input_x = np.sin(steps)
target_y = np.cos(steps)
plt.plot(steps, input_x, 'b-', label='input:sin')
plt.plot(steps, target_y, 'r-', label='target:cos')
plt.legend(loc='best')  #设置图例位置
plt.show()                      #sin和cos的图像


class LSTM(nn.Module):
    def __init__(self):
        super(LSTM, self).__init__()
        self.lstm = nn.LSTM(
            input_size=INPUT_SIZE,
            hidden_size=20,
            batch_first=True,
        )
        self.out = nn.Linear(20, 1)

    def forward(self, x, h_state,c_state):
        r_out,(h_state,c_state) = self.lstm(x,(h_state,c_state))    #self.lstm()传入变量,然后输出r_out
        outputs = self.out(r_out[0,:]).unsqueeze(0)            #r_out输入线性神经网络层self.out() 得到outputs
        return outputs,h_state,c_state

    def InitHidden(self):               #隐含单元初始化
        h_state = torch.randn(1,1,20)
        c_state = torch.randn(1,1,20)
        return h_state,c_state


lstm = LSTM()
optimizer = torch.optim.Adam(lstm.parameters(), lr= 0.001)
loss_func = nn.MSELoss()

h_state,c_state = lstm.InitHidden()

plt.figure(1, figsize=(12, 5))
plt.ion()

for step in range(300):
    start, end = step * np.pi, (step+1)*np.pi
    steps = np.linspace(start, end, 100, dtype=np.float32)
    x_np = np.sin(steps)
    y_np = np.cos(steps)
    x=torch.from_numpy(x_np).unsqueeze(0).unsqueeze(-1)
    y=torch.from_numpy(y_np).unsqueeze(0).unsqueeze(-1)
    prediction, h_state,c_state = lstm(x, h_state,c_state)

    #防止程序自动计算隐藏向量的梯度值
    h_state = h_state.data
    c_state = c_state.data

    loss = loss_func(prediction, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    plt.plot(steps, y_np.flatten(), 'r-')
    plt.plot(steps, prediction.data.numpy().flatten(), 'b-')
    plt.draw(); plt.pause(0.05)

plt.ioff()
plt.show()
print('loss=%.4f' % loss.item())

困惑:1.forward那里能不能改一下代码,可以看出程序运行的逻辑感?

           2.def InitHidden(self): 不加可以么?

结果:

week6&7(2021.10.23-2021.11.5)_第6张图片

week6&7(2021.10.23-2021.11.5)_第7张图片

其他:线性网络示例代码:(看这个代码还挺有意思的,就拿过来了)

import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt


x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)          #input:生成-1开始,1结束,中间分为100步的一维张良,linspace代表等分  dim:在第二维(程序中的1代表第二维)增加1维
y = x.pow(2) + 0.2*torch.rand(x.size())  # 加入噪声

x, y = Variable(x), Variable(y)                  #tensor转变量

# plt.scatter(x.data.numpy(), y.data.numpy())
# plt.show()
# print(x)
# print(x.data)
# print(x.numpy())
# print(x.data.numpy())


class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)

    def forward(self, x):
        x = F.relu(self.hidden(x))
        x = self.predict(x)
        return x


net = Net(1, 10, 1)  # n_feature, n_hidden, n_output

plt.ion()  # 由于程序默认阻塞模式,所以现在要打开交互模式ion
plt.show()

optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
loss_func = torch.nn.MSELoss()


for t in range(100):
    prediction = net(x)
    loss = loss_func(prediction, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if t % 5 == 0:
        # plot and show learning process
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
        plt.text(0.5, 0, 'loss=%.4f' % loss.item(), fontdict={'size': 20, 'color': 'red'})
        plt.pause(0.1)

plt.ioff()
plt.show()

知识点:

1.torch.linspace ​​​​​​

             PyTorch中torch.linspace的详细用法_WhiffeYF的博客-CSDN博客

2.torch.unsqueeze

             python中的unsqueeze()和squeeze()函数 - OliYoung - 博客园 (cnblogs.com)

3.Variable(x)

             Pytorch中Variable变量详解_h1239757443的博客-CSDN博客

4.plt.ion() 

              matplotlib的plt.ion()和plt.ioff()函数_yzy的博客-CSDN博客

5.plt.off():参考4

6.nn.linear():

              PyTorch的nn.Linear()详解_风雪夜归人o的博客-CSDN博客_nn.linear

结果:(loss存在浮动)

week6&7(2021.10.23-2021.11.5)_第8张图片

你可能感兴趣的:(语音识别,人工智能)