CPU部署jit模型时报错:Could not run ‘atenempty_strided’ with arguments from the ‘CUDA’ backend

文章首发及后续更新:https://mwhls.top/3977.html,无图/无目录/格式错误/更多相关请至首发页查看。
新的更新内容请到mwhls.top查看。
欢迎提出任何疑问及批评,非常感谢!

没想到昨天才因为鸽了太久发了水贴,第二天就有帖子发了

这个问题网上很多说的是移动端部署的,但我这个是cpu部署,我感觉这问题应该很多人碰到才对,结果没搜到
真是可惜啊哈哈哈

目录
错误信息
解决方式
产生原因

错误信息

Traceback (most recent call last):
  File "infer.py", line 153, in 
    main()
  File "infer.py", line 132, in main
    predicted, prob = infer_imgs(model_path, imgs)
  File "infer.py", line 117, in infer_imgs
    model = torch.jit.load(model_path)
  File "/usr/local/lib/python3.8/site-packages/torch/jit/_serialization.py", line 162, in load
    cpp_module = torch._C.import_ir_module(cu, str(f), map_location, _extra_files)
NotImplementedError: Could not run 'aten::empty_strided' with arguments from the 'CUDA' backend. This could be because the operator doesn't exist for this backend, or was omitted during the selective/custom build process (if using custom build). If you are a Facebook employee using PyTorch on mobile, please visit https://fburl.com/ptmfixes for possible resolutions. 'aten::empty_strided' is only available for these backends: [Dense, Conjugate, Negative, UNKNOWN_TENSOR_TYPE_ID, QuantizedXPU, UNKNOWN_TENSOR_TYPE_ID, UNKNOWN_TENSOR_TYPE_ID, UNKNOWN_TENSOR_TYPE_ID, UNKNOWN_TENSOR_TYPE_ID, UNKNOWN_TENSOR_TYPE_ID, SparseCPU, SparseCUDA, SparseHIP, UNKNOWN_TENSOR_TYPE_ID, UNKNOWN_TENSOR_TYPE_ID, UNKNOWN_TENSOR_TYPE_ID, SparseXPU, UNKNOWN_TENSOR_TYPE_ID, SparseVE, UNKNOWN_TENSOR_TYPE_ID, UNKNOWN_TENSOR_TYPE_ID, UNKNOWN_TENSOR_TYPE_ID, UNKNOWN_TENSOR_TYPE_ID, UNKNOWN_TENSOR_TYPE_ID, NestedTensorCUDA, UNKNOWN_TENSOR_TYPE_ID, UNKNOWN_TENSOR_TYPE_ID, UNKNOWN_TENSOR_TYPE_ID, UNKNOWN_TENSOR_TYPE_ID, UNKNOWN_TENSOR_TYPE_ID, UNKNOWN_TENSOR_TYPE_ID].
CPU: registered at aten/src/ATen/RegisterCPU.cpp:37386 [kernel]
Meta: registered at aten/src/ATen/RegisterMeta.cpp:31637 [kernel]
QuantizedCPU: registered at aten/src/ATen/RegisterQuantizedCPU.cpp:1294 [kernel]
BackendSelect: registered at aten/src/ATen/RegisterBackendSelect.cpp:726 [kernel]        
Python: registered at ../aten/src/ATen/core/PythonFallbackKernel.cpp:133 [backend fallback]
Named: registered at ../aten/src/ATen/core/NamedRegistrations.cpp:7 [backend fallback]   
Conjugate: fallthrough registered at ../aten/src/ATen/ConjugateFallback.cpp:22 [kernel]  
Negative: fallthrough registered at ../aten/src/ATen/native/NegateFallback.cpp:22 [kernel]
ZeroTensor: fallthrough registered at ../aten/src/ATen/ZeroTensorFallback.cpp:90 [kernel]
ADInplaceOrView: fallthrough registered at ../aten/src/ATen/core/VariableFallbackKernel.cpp:64 [backend fallback]
AutogradOther: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:14214 [autograd kernel]
AutogradCPU: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:14214 [autograd kernel]
AutogradCUDA: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:14214 [autograd kernel]
UNKNOWN_TENSOR_TYPE_ID: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:14214 [autograd kernel]
AutogradXLA: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:14214 [autograd kernel]
AutogradMPS: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:14214 [autograd kernel]
AutogradIPU: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:14214 [autograd kernel]
AutogradXPU: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:14214 [autograd kernel]
AutogradHPU: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:14214 [autograd kernel]
UNKNOWN_TENSOR_TYPE_ID: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:14214 [autograd kernel]
AutogradLazy: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:14214 [autograd kernel]
AutogradPrivateUse1: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:14214 [autograd kernel]
AutogradPrivateUse2: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:14214 [autograd kernel]
AutogradPrivateUse3: registered at ../torch/csrc/autograd/generated/VariableType_2.cpp:14214 [autograd kernel]
Tracer: registered at ../torch/csrc/autograd/generated/TraceType_2.cpp:14069 [kernel]    
AutocastCPU: fallthrough registered at ../aten/src/ATen/autocast_mode.cpp:481 [backend fallback]
Autocast: fallthrough registered at ../aten/src/ATen/autocast_mode.cpp:324 [backend fallback]
Batched: registered at ../aten/src/ATen/BatchingRegistrations.cpp:1064 [backend fallback]
VmapMode: fallthrough registered at ../aten/src/ATen/VmapModeRegistrations.cpp:33 [backend fallback]
Functionalize: registered at ../aten/src/ATen/FunctionalizeFallbackKernel.cpp:89 [backend fallback]
PythonTLSSnapshot: registered at ../aten/src/ATen/core/PythonFallbackKernel.cpp:137 [backend fallback]

解决方式

  • 将模型加载从
  • model = torch.jit.load(model_path)
  • 改为
  • model = torch.jit.load(model_path, map_location='cpu')

产生原因

  • 根据 PyTorch 文档的说明,torch.jit.load在加载时,会将模型首先加载至CPU,然后移动至模型保存时的设备。
    • 原文:All previously saved modules, no matter their device, are first loaded onto CPU, and then are moved to the devices they were saved from. If this fails (e.g. because the run time system doesn’t have certain devices), an exception is raised.
  • 在新环境仅有 CPU 的情况下,由 GPU 训练的模型,会在加载时移动至新环境不存在的 GPU,故报错。

你可能感兴趣的:(python,深度学习,python,pytorch,模型部署)