- Elasticsearch大文件检索性能提升20倍实践(干货)_elasticsearch 查询优化
2401_84247505
2024年程序员学习elasticsearchjenkins大数据
3、问题排查与定位步骤1:限定返回记录条数。不提供直接访问末页的入口。baidu,360,搜狗等搜索引擎都不提供访问末页的请求方式。都是基于如下的请求方式:通过点击上一下、下一页逐页访问。这个从用户的角度也很好理解,搜索引擎返回的前面都是相关度最高的,也是用户最关心的信息。Elasticsearch的默认支持的数据条数是10000条,可以通过post请求修改。最终,本步骤将支持ES最大返回值100
- 用Python添加、读取和删除Word文档属性
在Python中处理Word文档时,对文档属性进行操作是一项重要的任务。文档属性主要分为内置属性(如标题、作者等)和自定义属性(用户根据自身需求定义的属性)。合理地管理这些属性,能够提升文档管理效率、优化信息检索功能,并确保文档数据的准确性与安全性。本文将介绍如何使用Python实现对Word文档属性的添加、读取和删除操作,包括内置文档属性和自定义文档属性。用Python添加文档属性到Word文档
- 向量存储与检索器
小码农0912
AI应用开发向量存储与检索器向量存储检索器langchain
文章目录向量存储如何创建和查询向量存储相似性搜索按向量进行相似性搜索异步操作检索器如何使用向量存储作为检索器从向量存储创建检索器最大边际相关性检索传递搜索参数相似性得分阈值检索指定前k案例案例1案例2langchain支持从向量数据库和其他来源检索数据,以便与LLM(大型语言模型)工作流程集成。它们对于应用程序来说非常重要,这些应用程序需要获取数据以作为模型推理的一部分进行推理,就像检索增强生成(
- 第三十个问题-讲讲Agent、MCP、OpenAI Responses API
释迦呼呼
AI一千问人工智能语言模型机器学习深度学习自然语言处理
1.Agent(智能体)136定义与核心功能Agent是什么:能够自主执行复杂任务的智能实体,通常基于大语言模型(LLM)构建,配备指令和工具,可独立完成多步骤任务(如网络搜索、文件处理、自动化操作等)18。应用场景:客服自动化、法律文档检索、代码审查、数据输入、股票分析等36。OpenAI的Agent生态:DeepResearch:自动生成带引用的研究报告。Operator:通过控制浏览器光标执
- 大模型工程师学习日记(十四):检索增强生成(RAG)
MMMMMMMay Love Code
学习langchain深度学习人工智能开发语言
如何递归分割文本递归分割(recursively),这个文本分割器是用于通用文本的推荐工具。它接受一个字符列表作为参数。它会按顺序尝试在这些字符上进行分割,直到块足够小。默认的字符列表是["\n\n","\n","",""]。这样做的效果是尽可能保持所有段落(然后是句子,再然后是单词)在一起,因为这些通常看起来是语义上相关的文本块。文本如何分割:根据字符列表。块大小如何衡量:根据字符数量。下面我们
- DeepSeek 使用教程及部署指南:从入门到实践
点我头像干啥
Ai信息可视化python人工智能分类数据挖掘深度学习
目录引言第一部分:DeepSeek简介1.1什么是DeepSeek?1.2DeepSeek的核心功能1.3DeepSeek的应用场景第二部分:DeepSeek使用教程2.1注册与登录2.2创建项目2.3数据导入2.4数据分析2.5文本挖掘2.6信息检索2.7保存与分享第三部分:DeepSeek部署指南3.1本地部署3.1.1环境准备3.1.2安装DeepSeek3.1.3启动DeepSeek3.2
- Linux基本指令3
N201871643
热门相关技术分享linux服务器网络
Linux基本指令3目录Linux基本指令3一、Linux文件系统管理二、Linux进程与服务管理三、Linux网络配置与诊断一、Linux文件系统管理1.文件系统概述-定义:Linux文件系统是操作系统用于控制数据存储和检索的方法。它通过文件和目录的结构来组织数据,并提供了操作这些数据的工具。-作用:管理用户数据、系统配置、日志文件等,确保数据的持久性和可靠性。-类型:ext4(默认)、xfs、
- CSS3学习教程,从入门到精通, CSS3入门介绍的语法知识点及案例(1)
知识分享小能手
前端开发网页开发编程语言如门css3学习csshtml5前端javahtml
CSS3入门介绍一、CSS3选择器1.1基本选择器/*元素选择器*/p{color:red;}/*类选择器*/.myClass{font-size:20px;}/*ID选择器*/#myId{background-color:yellow;}/*通用选择器*/*{margin:0;padding:0;}这是一个段落这是一个带有类的段落这是一个带有ID的段落1.2属性选择器/*属性选择器*/[href
- 【开源代码解读】AI检索系统R1-Searcher通过强化学习RL激励大模型LLM的搜索能力
accurater
人工智能深度学习R1-Searcher
关于R1-Searcher的报告:第一章:引言-AI检索系统的技术演进与R1-Searcher的创新定位1.1信息检索技术的范式转移在数字化时代爆发式增长的数据洪流中,信息检索系统正经历从传统关键词匹配到语义理解驱动的根本性变革。根据IDC的统计,2023年全球数据总量已突破120ZB,其中非结构化数据占比超过80%。这种数据形态的转变对检索系统提出了三个核心的挑战:语义歧义消除:如何准确理解"A
- 信息检索系统评估指标的层级分析:从单点精确度到整体性能度量
人工智能深度学习llm检索系统
在构建搜索引擎系统时,有效的评估机制是保证系统质量的关键环节。当用户输入查询词如"machinelearningtutorialspython",系统返回结果列表后,如何客观评估这些结果的相关性和有效性?这正是信息检索评估指标的核心价值所在。分析用户与搜索引擎的交互模式,我们可以观察到以下行为特征:用户主要关注结果列表的前几项对顶部结果的关注度显著高于底部结果用户基于多次搜索体验形成对搜索系统整体
- 高性能缓存利器:Caffeine 在 Spring Boot 中的应用
阿里小阿希
JAVA缓存springbootspring
在现代应用程序中,缓存是提高数据检索速度、减少对数据库或其他数据源访问次数的重要手段。SpringCache提供了多种缓存实现方式,而在我们的SpringBoot项目中,我们选择了Caffeine作为默认的缓存库。Caffeine简介Caffeine是一个基于Java8的高性能、近乎最佳的缓存库。它提供了多种优化技术,如写入时复制(Copy-on-Write)和分段锁(SegmentedLocki
- 4.2.3 键值对集合2
.Net学习
C#教程c#开发语言
版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的4.2.3.3KeyValuePair结构KeyValuePair结构定义可设置或检索的键/值对。通常在KeyValuePair的构造函数中传入键和值作为参数,例如下面的语句定义了键为int、值为string的KeyValuePair,并赋予了初始值:KeyValuePairnewKeyValueP
- 向量库集成指南
三月七꧁ ꧂
langchain+llm集成学习自然语言处理语言模型机器学习人工智能gptllama
文章目录向量库集成指南Chroma集成Pinecone集成MiLvus集成向量库集成指南 向量库是一种索引和存储向量嵌入以实现高效管理和快速检索的数据库。与单独的向量索引不同,像Pinecone这样的向量数据库提供了额外的功能,例如,索引管理、数据管理、元数据存储和过滤,以及水平扩展。特别是在处理大数据和复杂查询时,向量库在多种应用场景中发挥着关键作用。其中,语义文本搜索是一个典型的应用,用
- Cursor 终极使用指南:从零开始走向AI编程
二川bro
智能AI前端AI编程
Cursor终极使用指南:从零开始走向AI编程问什么是cursor?mindmaproot(Cursor核心功能)智能编码代码生成自动补全错误修复项目管理多窗口布局版本控制终端集成个性设置主题定制快捷键配置插件扩展AI协作对话编程知识检索文档生成前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。https://www.captainbed.cn/ccc
- C++中map和set的详解
yang789022
c++算法开发语言
C++中map和set的介绍与使用在C++编程中,map和set是标准模板库(STL)中两种非常重要的关联容器。它们基于平衡二叉搜索树(通常是红黑树)的数据结构来实现,提供了高效的数据存储和检索功能。本文将详细介绍map和set的特点、用法以及一些常见的操作示例。一、map的介绍与使用1.map的基本概念map是一个键值对容器,其中每个键都是唯一的,且按照升序排序。map的内部结构是红黑树,这使得
- RAG技术的PDF智能问答系统
AI Echoes
深度学习
关键要点系统基于RAG(检索增强生成)技术,允许用户上传PDF并进行智能问答。使用Ollama的deepseek-r1模型和FAISS向量数据库,支持普通对话和基于PDF的问答模式。提供简洁的Web界面,支持文件拖拽上传和多轮对话。研究表明,系统适合处理PDF内容查询,但性能可能因PDF复杂性而异。系统概述这个PDF智能问答系统是一个基于RAG技术的工具,旨在帮助用户通过上传PDF文件进行智能交互
- C++中map和set的详解
漏洞猎人001
c++算法开发语言
C++中map和set的介绍与使用在C++编程中,map和set是标准模板库(STL)中两种非常重要的关联容器。它们基于平衡二叉搜索树(通常是红黑树)的数据结构来实现,提供了高效的数据存储和检索功能。本文将详细介绍map和set的特点、用法以及一些常见的操作示例。一、map的介绍与使用1.map的基本概念map是一个键值对容器,其中每个键都是唯一的,且按照升序排序。map的内部结构是红黑树,这使得
- ng-网关-zuul
给自己做加法
个人java
一般服务的访问ng-》网关-》服务所以通常有一个服务访问的前缀,这个前缀是在ng上配置的,然后接着才是具体服务的url,zuul可以没有前缀,但是zuul决定了跳转的服务。zuul的配置path其实就是寻找到对应的url格式,然后选择选择跳转注意,当出现两个服务器的url前缀一样的时候,path该如何配置呢?答案是zuul从上之下检索url,符合条件就进行跳转。既然访问是根据path进行判断的,那
- TF-IDF:文本挖掘中的关键词提取利器
巷955
tf-idf
引言在自然语言处理(NLP)和文本挖掘中,TF-IDF是一种常用的技术,用于评估一个词在文档中的重要性。它不仅在信息检索领域广泛应用,还在文本分类、关键词提取等任务中发挥着重要作用。本文将详细介绍TF-IDF的原理,并通过一个实际的代码示例来展示如何使用TF-IDF从《红楼梦》中提取核心关键词。1.什么是TF-IDF?TF-IDF是一种统计方法,用于评估一个词在文档中的重要性。它由两部分组成:-T
- 深入理解信息检索之BM25算法
Lunar*
算法与优化自然语言处理人工智能
1.BM25算法简介BM25算法,全称为"BestMatching25",是由StephenRobertson和KarenSpärckJones在1990年代初基于早期的概率排名模型(如二元独立检索模型)发展而来。它通过一种概率论的方法来衡量文档与用户查询之间的相关性。2.BM25的核心原理BM25算法的核心在于两个主要的概念:逆文档频率(IDF)和词频(TF)调整。逆文档频率(IDF):IDF用
- AI学习指南RAG篇(5)-RAG的系统架构
俞兆鹏
AI学习指南ai
文章目录一、引言二、RAG系统的四个核心组件1.知识库处理模块1.1文档收集1.2文档预处理1.3示例代码2.向量化模块2.1文本嵌入2.2向量数据库2.3示例代码3.检索引擎3.1检索算法3.2检索结果排序3.3示例代码4.生成模块4.1生成模型4.2提示工程4.3示例代码三、RAG系统的架构图四、总结一、引言RAG(Retrieval-AugmentedGeneration,检索增强生成)技术
- Python 爬虫基础教程
盛子涵666
python爬虫开发语言
爬虫的背景与应用诞生爬虫(WebCrawling)是自动化程序,用于从互联网上获取信息。爬虫的基本任务是自动访问网站,通过抓取网页内容并提取有用数据来构建数据库、索引或者进行进一步的数据分析。爬虫通常会模拟浏览器的行为,以避免被服务器识别为机器人,并且能够在大规模范围内高效地抓取信息。爬虫技术最早由搜索引擎开发者提出,目的是自动收集网页信息并将其索引,便于用户搜索时快速检索相关内容。随着互联网的快
- 【GPT入门】第16课 RAG入门
*星星之火*
大模型gpt
【GPT入门】第16课RAG入门1.RAG概念核心原理主要应用优势挑战RGA工作图解2.RAG系统基本搭建流程1.RAG概念RAG通常指检索增强生成(Retrieval-AugmentedGeneration),是一种将检索技术与生成式人工智能相结合的技术架构,以下是关于它的详细介绍:核心原理检索:RAG会在大量的文本数据中进行检索,这些数据可以是网页、文档、知识库等。它通过各种检索算法和技术,快
- 利用 DeepSeek 总结运维知识库的总结报告
缘来是黎
webankpython
一、背景在运维工作中,知识库是重要的知识沉淀与共享工具。随着公司业务的发展,运维涉及的系统、设备和技术日益复杂,原有的运维知识库内容繁杂、缺乏条理,难以高效检索和利用。为了提升知识库的可用性,我尝试借助DeepSeek这一强大的AI工具对其进行总结与优化。二、问题分析知识碎片化:原知识库中的知识分散在不同文档和记录中,缺乏统一的组织架构,导致查找特定知识时需要耗费大量时间。分类不清晰:知识分类不够
- LangChain实战:利用LangChain SQL Agent和GPT进行文档分析和交互
AGI八零后
langchainsqlgpt
我最近接触到一个非常有趣的挑战,涉及到人工智能数字化大量文件的能力,并使用户可以在这些文件上提出复杂的与数据相关的问题,比如:数据检索问题:涉及从数据库中获取特定数据点或数据集,例如“电子产品类别中有多少产品?”或“2021年第四季度总销售额是多少?”汇总查询:需要对数据进行总结的问题,如计算平均值、求和、计数等,例如“所有已上架产品的平均价格是多少?”或“每个地区客户的总人数是多少?”数据关系探
- HTML常用标签
花林似霰f
html前端javascript
(一)标题标签-标题标签从到一共只有6级标题文本会加粗从上到下字体逐渐减小(二)段落和换行标签1.我是一个段落标签2.在HTML中,一个段落中的文字会从左到右依次排列,直到浏览器窗口的右端,然后才自动换行。如果希望某段文本强制换行显示,就需要使用换行标签。(少有的单标签)(三)和标签和是没有语义的,可以看做是一个盒子,用来装内容的。1.标签用来布局,但是现在一行只能放一个。大盒子2.标签用来布局,
- 从零开始:基于LLM大模型构建智能应用程序的完整指南
AI天才研究院
ChatGPT人工智能
目录从零开始:基于LLM大模型构建智能应用程序的完整指南什么是LLM大模型如何利用LLM大模型构建智能应用程序1.收集和准备数据2.构建LLM大模型3.集成和部署4.监测和维护使用特定于私有领域的数据增强LLM检索增强生成(RAG)数据预处理、分块和检索技术零射击与少量射击提示和指导LLM大模型使用LLM进行推荐和聚类任务改善组织内的搜索体验考虑以上所有解锁的利基应用程序参考最近,围绕大型语言模型
- 【大模型新书】基于RAG的生成式AI:使用LlamaIndex、Deep Lake和Pinecone构建自定义的检索增强生成管道
AI大模型-大飞
人工智能大模型学习AI产品经理语言模型大模型RAG大模型教程
书籍简介最小化AI幻觉,构建准确的自定义生成式AI管道,利用嵌入式向量数据库和集成的人类反馈来实现检索增强生成(RAG)购买本书的纸质版或Kindle版即包含免费的PDF格式电子书主要特点实现RAG的可追溯输出,将每个响应与其源文档链接,构建可靠的多模态对话智能体在管道中集成RAG、实时人类反馈改进和知识图谱,交付准确的生成式AI模型在动态检索数据集与微调静态数据之间平衡成本与性能书籍描述基于RA
- Activeloop Deep Lake: AI时代的数据湖解决方案
HGWAcsdgvs
人工智能python
技术背景介绍在当前AI技术蓬勃发展的背景下,数据的存储和检索显得尤为重要。ActiveloopDeepLake是一种多模态向量存储解决方案,支持嵌入和元数据(如文本、Json、图像、音频、视频等)的存储。它适用于本地、云端或Activeloop存储,通过嵌入以及其属性进行混合搜索。该解决方案是一个无服务器的数据湖,具备版本控制、查询引擎和深度学习框架的流媒体数据加载器。核心原理解析DeepLake
- AI编程方法第二弹:边提问边调整
leeshuqing
AI编程AI编程
AI编程的提问词非常类似于传统搜索引擎中的检索词,虽然采取了自然语言表示,但是在获取结果的策略上却很一致。因为用户在一开始可能并不非常清楚AI编程工具如何理解用户的提问,因此输出结果可能并不能完全满足用户要求,此时用户可以不断的根据生成结果,动态的灵活的调整提问,使之不断趋近于自己满意的结果。比如,对于“Python”等任意英文单词,允许用户指定总宽度后,通过自动填充空格,使之总宽度尽可能等于该宽
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源