Apollo中对路径规划解耦,分为路径规划与速度规划两部分。并将规划分为决策与优化两个部分。
• 路径规划 —— 静态环境(道路,静止/低速障碍物)
• 速度规划 —— 动态环境(中/高速障碍物)
## 1.1 速度规划的坐标系
ps:蓝色四边形为障碍车在ST图下的投影。长边的斜率代表车速,短边代表障碍车在主车规划出的路径中占据的长度。
路径规划的配置文件在lane_follow_config.pb.txt
中
// /home/yuan/apollo-edu/modules/planning/conf/scenario/lane_follow_config.pb.txt
scenario_type: LANE_FOLLOW
stage_type: LANE_FOLLOW_DEFAULT_STAGE
stage_config: {
//路径规划
stage_type: LANE_FOLLOW_DEFAULT_STAGE
enabled: true
task_type: LANE_CHANGE_DECIDER
task_type: PATH_REUSE_DECIDER
task_type: PATH_LANE_BORROW_DECIDER
task_type: PATH_BOUNDS_DECIDER
task_type: PIECEWISE_JERK_PATH_OPTIMIZER
//速度规划
task_type: PATH_ASSESSMENT_DECIDER
task_type: PATH_DECIDER
task_type: RULE_BASED_STOP_DECIDER
task_type: SPEED_BOUNDS_PRIORI_DECIDER
task_type: SPEED_HEURISTIC_OPTIMIZER
task_type: SPEED_DECIDER
task_type: SPEED_BOUNDS_FINAL_DECIDER
task_type: PIECEWISE_JERK_SPEED_OPTIMIZER
# task_type: PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER
task_type: RSS_DECIDER
_DECIDER
结尾的为决策部分 _OPTIMIZER
结尾的为优化部分。
产生速度可行驶边界
所形成的区域是非凸的,不能用之前凸优化的方法去做,需要用动态规划的方法去做。
动态规划规划目标
产生速度决策
根据粗规划出的速度曲线,依据曲线在障碍物的上方还是下方,采取不同的决策。
产生平滑速度规划曲线
根据ST图的可行驶区域,优化出一条平滑的速度曲线。满足一阶导、二阶导平滑(速度加速度平滑);满足道路限速;满足车辆动力学约束。
PIECEWISE_JERK_SPEED_OPTIMIZER
基于二次规划的速度规划
PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER
基于非线性规划的速度规划
两者二选一即可
将SL曲线、ST曲线合成为完整轨迹,之后作为Planning的输出。
动态规划——通过把原问题分解为相对简单的子问题,再根据子问题的解来求解出原问题解的方法
状态转移方程
f ( P ) = min { f ( R ) + w R → P } f(P) = \min \{ f(R) + {w_{R \to P}}\} f(P)=min{f(R)+wR→P}
基于动态规划的速度规划的流程如下:
1.对路程和时间进行采样
2.搜索出粗略的可行路线
3.选出代价最小的一条
速度规划在ST图进行采样,在 t t t的方向上以固定的间隔进行采样,在 s s s方向上以先密后疏的方式进行采样(离主车越近,所需规划的精度就需更高;离主车越远,牺牲采样精度,提升采样效率)
// 时间采样的一般参数设置
unit_t: 1.0 //采样时间
dense_dimension_s: 101 // 采样密集区域的点数
dense_unit_s: 0.1 //采样密集区域的间隔
sparse_unit_s: 1.0 //采样系数区域的间隔
S_safe_overtake
超车的安全距离
S_safe_follow
跟车的安全距离
在设计状态转移方程时,要求不能与障碍物发生碰撞以及和障碍物不发生碰撞。于是可以得到以下方程:
C s p a t i a l = w s p a t i a l ( s t o t a l − s ( j ) ) {C_{spatial}} = {w_{spatial}}({s_{total}} - s(j)) Cspatial=wspatial(stotal−s(j)) w s p a t i a l {w_{spatial}} wspatial为损失权值
( s t o t a l − s ( j ) ) ({s_{total}} - s(j)) (stotal−s(j))当前点到目标点的差值。
状态转移cost计算分为三个部分:
C e d g e = C s p e e d + C a c c + C j e r k {C_{edge}} = {C_{speed}} + {C_{acc}} + {C_{jerk}} Cedge=Cspeed+Cacc+Cjerk C s p e e d {C_{speed}} Cspeed——速度代价
C a c c {C_{acc}} Cacc——加速度代价
C j e r k {C_{jerk}} Cjerk——加加速度代价
节点间速度为: v = s ( j + k ) − s ( j ) Δ t v = \frac{{s(j + k) - s(j)}}{{\Delta t}} v=Δts(j+k)−s(j)
限速比率: v det = v − v l i m i t v l i m i t {v_{\det }} = \frac{{v - {v_{limit}}}}{{{v_{limit}}}} vdet=vlimitv−vlimit
C s p e e d {C_{speed}} Cspeed速度代价的计算如下:
若速度<0,则是倒车的状况,轨迹不可行,代价值设为无穷大;若速度>0,且高于限速,则会有超速的惩罚;若速度<0,且低于限速,则会有低速的惩罚。在Apollo中,超速的惩罚值(1000)远大于低速的惩罚值(10)。
加速度的计算如下:
a ( i + 1 , j + k ) = s ( k + j ) − s ( j ) Δ t − s ( j ) − s ( l ) Δ t Δ t a(i + 1,j + k) = \frac{{\frac{{s(k + j) - s(j)}}{{\Delta t}} - \frac{{s(j) - s(l)}}{{\Delta t}}}}{{\Delta t}} a(i+1,j+k)=ΔtΔts(k+j)−s(j)−Δts(j)−s(l) C a c c {C_{acc}} Cacc加速度代价的计算如下: 若超过最大加速度或小于最小加速度,则代价值设为无穷大,若在之间,Apollo设计了这样的代价函数进行计算: y = x 2 + x 2 1 + e x + 4 + x 2 1 + e x + 2 y = {x^2} + \frac{{{x^2}}}{{1 + {e^{x + 4}}}} + \frac{{{x^2}}}{{1 + {e^{x + 2}}}} y=x2+1+ex+4x2+1+ex+2x2 其函数图像如下:
越靠近0,代价值越小;越靠近目标值,代价值越大,满足舒适性与平滑性。
加加速度的计算方式如下: j e r k = s 4 − 3 s 3 + 3 s 2 − s 1 Δ t 3 jerk = \frac{{{s_4} - 3{s_3} + 3{s_2} - {s_1}}}{{\Delta {t^3}}} jerk=Δt3s4−3s3+3s2−s1
加加速度超过设定边界,设为无穷;若在之间,则按二次方的方式进行计算。加加速度越小越好。
最后是总的代价: 迭代范围:
在每次迭代时会将总的代价与当前节点的代价进行比较,取最小的一个,进行更新。
从 s ( i , j ) s(i,j) s(i,j)到 s ( i + 1 , j + k ) s(i+1,j+k) s(i+1,j+k)可以拓展到速度范围内的节点,按代价值的大小进行更新,最后按最后一列代价值最小的点进行求解,再进行回溯,得到ST曲线。
动态规划得到的轨迹还比较粗糙,需要用优化的方法对轨迹进行进一步的平滑。基于二次规划的速度规划的方法与路径规划基本一致。
优化变量 x x x, x x x有三个部分组成:从 s 0 s_0 s0, s 1 s_1 s1, s 2 s_2 s2到 s n − 1 s_{n-1} sn−1,从 s ˙ 0 \dot s_0 s˙0, s ˙ 1 \dot s_1 s˙1, s ˙ 2 \dot s_2 s˙2到 s ˙ n − 1 \dot s_{n-1} s˙n−1,从 s ¨ 0 \ddot s_0 s¨0, s ¨ 1 \ddot s_1 s¨1, s ¨ 2 \ddot s_2 s¨2到 s ¨ n − 1 \ddot s_{n-1} s¨n−1.
ps:三阶导的求解方式为: s ′ ′ i + 1 − s ′ ′ i Δ t \frac{{{{s''}_{i + 1}} - {{s''}_i}}}{{\Delta t}} Δts′′i+1−s′′i
对于目标函数的设计,我们需要明确以下目标:
w s w_s ws——位置的权重
w v w_v wv——速度的权重
p i p_i pi——曲率的权重
w a w_a wa——加速度的权重
w j w_j wj——加加速度的权重
接下来谈谈约束的设计。
要满足的约束条件:
• 主车必须在道路边界内,同时不能和障碍物有碰撞 s i ∈ ( s min i , s max i ) {s_i} \in (s_{\min }^i,s_{\max }^i) si∈(smini,smaxi)• 根据当前状态,主车的横向速度/加速度/加加速度有特定运动学限制:•必须满足基本的物理原理:
•起始点约束:; s 0 = s i n i t s_0=s_{init} s0=sinit, s ˙ 0 = s i n i t \dot s_0=s_{init} s˙0=sinit, s ¨ 0 = s i n i t \ddot s_0=s_{init} s¨0=sinit满足的是起点的约束,即为实际车辆规划起点的状态。
代入OSQP求解器进行求解,输出一条平稳、舒适、能安全避开障碍物并且尽快到达目的地的速度分配曲线。
为了使得限速更加精细,Apollo提出了一种基于非线性规划的速度规划方法。
基于二次规划的速度规划中, p i p_i pi是曲率关于时间 t t t的函数,但实际上路径的曲率是与 s s s相关的。二次规划在原先动态规划出来的粗糙ST曲线上将关于 s s s的曲率惩罚转化为关于 t t t的曲率惩罚,如此,当二次规划曲线与动态规划曲线差别不大,规划出来基本一致;若规划差别大,则会差别很大。就如图所示,规划出来的区间差别较大。限速/曲率的函数是关于 s s s的函数,而 s s s是我们要求的优化量,只能通过动态规划进行转化,如此就会使得二次规划的速度约束不精确。
基于非线性规划的速度规划步骤与之前规划步骤基本一致。
采样方式:等间隔的时间采样。 s l o w e r s_{lower} slower与 s u p p e r s_{upper} supper为松弛变量,防止求解失败。
目标函数与二次规划的目标函数差不多,增加了横向加速度的代价值以及松弛变量 w s o f t s l o w e r w_{soft}s_{lower} wsoftslower与 w s o f t s u p p e r w_{soft}s_{upper} wsoftsupper。
横向加速度的计算方式:
曲率是关于 s s s的关系式,所以要进行平滑,对于非线性规划的求解器,无论是目标函数还是约束函数,都需要满足二阶可导: κ ′ = f ′ ′ ( s ) \kappa ' = f''(s) κ′=f′′(s) 曲率的平滑也是用到了二次规划的方法,用曲率的一阶导、二阶导、三阶导作为损失函数.
最后得到一条平滑曲率的曲线。
接下来是约束条件:
限速的函数并非直接可以得到,接下来看看限速函数是怎么来的。
限速的来源如下图所示: 将所有的限速函数相加,得到下图的限速函数,很明显,该函数既不连续也不可导,所以需要对其进行平滑处理。
对于限速曲线的平滑,Apollo采样分段多项式进行平滑,之后采样二次规划的方式进行求解。限速曲线的目标函数如下:
如此,我们就有了连续且可导的限速曲线。
再回到约束中,为了避免求解的失败,二次规划中对位置的硬约束,在非线性规划中转为了对位置的软约束。提升求解的精度。 同时还需满足基本的物理学原理
最后代入Ipopt中进行非线性规划的求解。
Ipopt(Interior Point Optimizer)是一个用于大规模非线性优化的开源软件包。它可用于解决如下形式的非线性规划问题: g L {g^L} gL和 g U {g^U} gU是约束函数的上界和下界, x L {x^L} xL和 x U {x^U} xU是优化变量的上界和下界。
Ipopt的求解由以下几个函数构成:
1.get_nlp_info()
定义问题规模
/** Method to return some info about the nlp */
bool get_nlp_info(int &n, int &m, int &nnz_jac_g, int &nnz_h_lag,
IndexStyleEnum &index_style) override;
• 优化变量数量:n
• 约束函数数量:m
• 雅可比矩阵非0项数量:nnz_jac_g
• 黑塞矩阵非0项数量:nnz_h_lag
2.get_bounds_info()
定义约束边界约束
/** Method to return the bounds for my problem */
bool get_bounds_info(int n, double *x_l, double *x_u, int m, double *g_l,
double *g_u) override;
• 自变量的下边界:x_l
• 自变量的上边界: x_u
• 约束函数下边界:g_l
• 约束函数的上边界:g_u
3.get_starting_point()
定义初值
/** Method to return the starting point for the algorithm */
bool get_starting_point(int n, bool init_x, double *x, bool init_z,
double *z_L, double *z_U, int m, bool init_lambda,
double *lambda) override;
• 定义优化变量的初始值x
对于速度规划问题,如何计算初始解?
Apollo同样用分段多项式二次规划的求解方式,得到符号约束的速度平滑曲线,作为非线性规划的初值。
4.eval_f()
求解目标函数
/** Method to return the objective value */
bool eval_f(int n, const double *x, bool new_x, double &obj_value) override;
• 变量值:x
• 目标函数值:obj_val
5.eval_grad_f()
求解梯度
/** Method to return the gradient of the objective */
bool eval_grad_f(int n, const double *x, bool new_x, double *grad_f) override;
• 变量值:x
• 梯度值:grad_f
6.eval_g()
求解约束函数
/** Method to return the constraint residuals */
bool eval_g(int n, const double *x, bool new_x, int m, double *g) override;
• 变量值:x
• 约束函数值:g
7.eval_jac_g()
求解约束雅可比矩阵
/** Method to return:
* 1) The structure of the jacobian (if "values" is nullptr)
* 2) The values of the jacobian (if "values" is not nullptr)
*/
bool eval_jac_g(int n, const double *x, bool new_x, int m, int nele_jac,
int *iRow, int *jCol, double *values) override;
• 变量值:x
• 雅可比矩阵非0元素数量:nele_jac
• 雅可比矩阵值:values
求解雅可比矩阵需要对约束函数进行求偏导:
微分关系等式约束:
8.eval_h()
求解黑塞矩阵
/** Method to return:
* 1) The structure of the hessian of the lagrangian (if "values" is
* nullptr) 2) The values of the hessian of the lagrangian (if "values" is not
* nullptr)
*/
bool eval_h(int n, const double *x, bool new_x, double obj_factor, int m,
const double *lambda, bool new_lambda, int nele_hess, int *iRow,
int *jCol, double *values) override;
• 变量值:·x·
• 拉格朗日乘数:·lambda·
• 黑塞矩阵值:·values·
• 目标函数因数:·obj_factor·
黑塞矩阵:拉格朗日函数
Ipopt的拉格朗日黑塞矩阵:
目标函数的二阶偏导数:
约束函数的二阶偏导数:
9. finalize_solution()
/** @name Solution Methods */
/** This method is called when the algorithm is complete so the TNLP can
* store/write the solution */
void finalize_solution(Ipopt::SolverReturn status, int n, const double *x,
const double *z_L, const double *z_U, int m,
const double *g, const double *lambda,
double obj_value, const Ipopt::IpoptData *ip_data,
Ipopt::IpoptCalculatedQuantities *ip_cq) override;
目标函数取得最小值时的优化量:x
目标函数最小值:obj_value
云实验地址——Apollo规划之速度规划仿真调试
1.启动DreamView
bash scripts/bootstrap.sh
模式选择Mkz Standard Debug,地图选择Apollo Virutal Map,打开Sim Control模式,打开PNC Monitor,等待屏幕中间区域出现Mkz车模型和地图后即表示成功进入仿真模式。
点击左侧Tab栏Module Controller,启动Planning,Prediction, Routing模块, 如果需要录制数据则打开Recorder模块。模块启动完成后,点击左侧Tab栏Profile, 选择Scenario Profiles里的course场景集,右上角选择场景场景开始仿真,点击减速让行场景和加速超车场景,观察PNC Monitor st曲线区别.
PNC Monitor中上方的st图是动态规划生成的st曲线,下方的st图是优化算法生成的st曲线
减速让行的场景,可以看到规划出的曲线在ST图中位于障碍物的下方。
加速超车的场景,可以看到规划出的曲线在ST图中位于障碍物的上方。
打开Data Recorder,将场景切换为掉头场景,接近弯道时点击Updata Time记录时间,场景运行结束后关闭planning模块
在云实验界面,点击Notebook打开jupyter
jupyter notebook
创建新的notebook,并输入%matplotlib notebook
激活matplotlib
%matplotlib notebook
在jupyter notebook中运行以下命令打开对应时间的非线性规划的中间运行结果/apollo/modules/planning/tools/plot_st_nlp.py
为绘图脚本文件的路径,planning.INFO
为planning日志文件的路径,23:29:03
为update更新的时间
run /apollo/modules/planning/tools/plot_st_nlp.py -f planning.INFO -t 23:29:03
有可能会出现这种状况
刷新几次,或将日志文件用其他方式打开(例如vim),当里面出现日志内容时,就可以了
default_task_config: {
task_type: PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER
piecewise_jerk_nonlinear_speed_optimizer_config {
acc_weight: 2.0
jerk_weight: 3.0
lat_acc_weight: 10.0
s_potential_weight: 0.05
ref_v_weight: 5.0
ref_s_weight: 100.0
soft_s_bound_weight: 1e6
use_warm_start: true
}
}
lat_acc_weight: 1000.0
打开planning模块,切换场景到减速带场景进行仿真,接近减速带时记录下时间,并通过plot st nlp.py脚本观察接近减速带时非线性规划算法的速度规划
在lane_ follow config.pb.txt
文件中, 修改速度优化算法为QP算法,重新打开planning模块, 重新运行减速带场景,并记录接近减速带时的时间
stage_config: {
stage_type: LANE_FOLLOW_DEFAULT_STAGE
enabled: true
task_type: LANE_CHANGE_DECIDER
task_type: PATH_REUSE_DECIDER
task_type: PATH_LANE_BORROW_DECIDER
task_type: PATH_BOUNDS_DECIDER
task_type: PIECEWISE_JERK_PATH_OPTIMIZER
task_type: PATH_ASSESSMENT_DECIDER
task_type: PATH_DECIDER
task_type: RULE_BASED_STOP_DECIDER
task_type: SPEED_BOUNDS_PRIORI_DECIDER
task_type: SPEED_HEURISTIC_OPTIMIZER
task_type: SPEED_DECIDER
task_type: SPEED_BOUNDS_FINAL_DECIDER
task_type: PIECEWISE_JERK_SPEED_OPTIMIZER
#task_type: PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER
task_type: RSS_DECIDER
运行plot_ st qp.py
,观察二次规划算法的速度 规划曲线在减速带区域速度规划和非线性规划算法有何区别。
非线性规划
二次规划
二次规划求解效率高,但不精确;非线性规划求解效率低,但精度高。