因为最近重新回炉深造Det细节了,就对cocoeval源码进行了阅读,发现这部分csdn上也没有很详细的注解,自己看了很久,就顺带写了一下注解吧,希望给看着烦的朋友一点帮助。
首先我们了解下cocoeval .py的构成吧。
Params类:
对于COCO格式的数据检测,我们主要分为不同的IoU阈值,不同的面积范围,单张图片的最大检测数量。在这些不同的参数下,会得到不同的AP与AR。
所以在这个类中,我们需要指定这些参数的数值范围,具体可看下面贴出的代码。
标准的即IoU阈值设置为从0.5-0.95 间隔0.05,一共10个阈值
AR的阈值为0-1 间隔0.01 ,一共101个阈值
面积范围为 small(0~32) medium(32~96) large(96~10**5)
检测最大数,按照置信度分数排序后选择最大检测数范围内的det结果。
COCOeval类:
创建COCOeval这个类的时候,我们需要传入两个COCO 类别的instance,一个是gt对应的COCO,一个是det对应的COCO,关于COCO的类别,那么关于COCO类,在之前文章中有介绍,传送门:COCO.py在det中的应用
OK,COCOeval类有三个方法是我们在det中会用到的,分别为evaluate,accumulate,summarize
其中evaluate的作用就是得到单张图片在特定类别,特定面积阈值内,特定最大检测数下的所有阈值检测结果。
accumulate是对这些单张图片的结果进行积累计算。
summarize会根据传入IoU阈值、面积阈值、最大检测数这些参数返回对应的mAp与mAR。
好了有了上述分析,来一个整体的流程吧:
首先我们创建COCOeval类,传入gt和det对应的两个COCO类,COCOeval类的构造函数会把gt中对应的img id与 cat id添加至类变量中。
然后我们调用这个instance的evaluate方法,在这个方法里调用_prepare方法,会生成gt与dt的字典列表,用[img_id,cat_id]作为key,value即为这个指定图片指定类别对应的所有ann信息,是一个list形式。根据这两个字典列表,我们可以生成iou计算,iou计算也以[img_id,cat_id]作为key,value是一个M*N维的ndarry矩阵,m为dt的个数,n为gt的个数。
然后将会调用evaluateImg这个方法,这个方法传入固定的img_id,cat_id,aRng,maxDet,我们可以得到对应的img在特定类别,特定面积阈值,特定最大检测数下的检测结果,(对于面积阈值来说,如果ann对应的bbox超过了就设置为ignore,对于最大检测数,按照置信度排序后取出前最大检测数个即可)把这个检测结果按照K,A,M的顺序堆叠,可以得到self.evalImgs这个list,这个list包含了所有图片在所有IoU阈值,面积阈值,最大检测数下的所有检测结果。
继续调用instance的accumulate方法,可以根据上述得到的self.evalImgs返回所有图片在不同IoU阈值、不同AR、不同类别、不同面积阈值、不同最大检测数下的Ap与AR,以numpy数组的返回,即precision(T,R,K,A,M) recall(T,K,A,M)。
继续调用instance的summarize方法,会根据传入的具体的IoU阈值,面积阈值,最大检测数的值返回上述precision和recall中对应维的检测结果,我们就可以自定义形式返回我们想要的各种参数下的AP与AR啦。
上面说的可能比较简单而且隐晦,下面贴注释过的源码,建议跟着上面说的顺序看一下以便理解。
import numpy as np
import datetime
import time
from collections import defaultdict
from . import mask as maskUtils
import copy
class COCOeval:
# Interface for evaluating detection on the Microsoft COCO dataset.
#
# The usage for CocoEval is as follows:
# cocoGt=..., cocoDt=... # load dataset and results
# E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object
# E.params.recThrs = ...; # set parameters as desired
# E.evaluate(); # run per image evaluation
# E.accumulate(); # accumulate per image results
# E.summarize(); # display summary metrics of results
# For example usage see evalDemo.m and http://mscoco.org/.
#
# The evaluation parameters are as follows (defaults in brackets):
# imgIds - [all] N img ids to use for evaluation
# catIds - [all] K cat ids to use for evaluation
# iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation
# recThrs - [0:.01:1] R=101 recall thresholds for evaluation
# areaRng - [...] A=4 object area ranges for evaluation
# maxDets - [1 10 100] M=3 thresholds on max detections per image
# iouType - ['segm'] set iouType to 'segm', 'bbox' or 'keypoints'
# iouType replaced the now DEPRECATED useSegm parameter.
# useCats - [1] if true use category labels for evaluation
# Note: if useCats=0 category labels are ignored as in proposal scoring.
# Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified.
#
# evaluate(): evaluates detections on every image and every category and
# concats the results into the "evalImgs" with fields:
# dtIds - [1xD] id for each of the D detections (dt)
# gtIds - [1xG] id for each of the G ground truths (gt)
# dtMatches - [TxD] matching gt id at each IoU or 0
# gtMatches - [TxG] matching dt id at each IoU or 0
# dtScores - [1xD] confidence of each dt
# gtIgnore - [1xG] ignore flag for each gt
# dtIgnore - [TxD] ignore flag for each dt at each IoU
#
# accumulate(): accumulates the per-image, per-category evaluation
# results in "evalImgs" into the dictionary "eval" with fields:
# params - parameters used for evaluation
# date - date evaluation was performed
# counts - [T,R,K,A,M] parameter dimensions (see above)
# precision - [TxRxKxAxM] precision for every evaluation setting
# recall - [TxKxAxM] max recall for every evaluation setting
# Note: precision and recall==-1 for settings with no gt objects.
#
# See also coco, mask, pycocoDemo, pycocoEvalDemo
#
# Microsoft COCO Toolbox. version 2.0
# Data, paper, and tutorials available at: http://mscoco.org/
# Code written by Piotr Dollar and Tsung-Yi Lin, 2015.
# Licensed under the Simplified BSD License [see coco/license.txt]
def __init__(self, cocoGt=None, cocoDt=None, iouType='segm'):
'''
Initialize CocoEval using coco APIs for gt and dt
:param cocoGt: coco object with ground truth annotations
:param cocoDt: coco object with detection results
:return: None
'''
if not iouType:
print('iouType not specified. use default iouType segm')
self.cocoGt = cocoGt # ground truth COCO API
self.cocoDt = cocoDt # detections COCO API
self.evalImgs = defaultdict(list) # per-image per-category evaluation results [KxAxI] elements
self.eval = {} # accumulated evaluation results
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
self.params = Params(iouType=iouType) # parameters
self._paramsEval = {} # parameters for evaluation
self.stats = [] # result summarization
self.ious = {} # ious between all gts and dts
if not cocoGt is None:
# 把GT中所有的img id 与 类别 id 加入 参数dict中
self.params.imgIds = sorted(cocoGt.getImgIds())
self.params.catIds = sorted(cocoGt.getCatIds())
def _prepare(self):
'''
Prepare ._gts and ._dts for evaluation based on params
在目标检测中 _.gts 索引Ann的index为 【图片ip, 类别ip】,得到的是一个list数组,如果一张图片的一个类别有多个bbox,
那么list中将会有多个item ._dts同理
:return: None
'''
def _toMask(anns, coco):
# modify ann['segmentation'] by reference
for ann in anns:
rle = coco.annToRLE(ann)
ann['segmentation'] = rle
p = self.params
if p.useCats:
# 获取特定图片,特定类别的注释,主要是清除检测中出现gt中没有的img id,class id
gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
else:
gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds))
dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds))
# convert ground truth to mask if iouType == 'segm'
if p.iouType == 'segm':
_toMask(gts, self.cocoGt)
_toMask(dts, self.cocoDt)
# set ignore flag
for gt in gts:
# 部分比较小的物体,会设置忽略检测 根据json中的注释来定
gt['ignore'] = gt['ignore'] if 'ignore' in gt else 0
gt['ignore'] = 'iscrowd' in gt and gt['iscrowd']
if p.iouType == 'keypoints':
gt['ignore'] = (gt['num_keypoints'] == 0) or gt['ignore']
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
# 给对应img,类别 添加对应的bbox信息
for gt in gts:
self._gts[gt['image_id'], gt['category_id']].append(gt)
for dt in dts:
self._dts[dt['image_id'], dt['category_id']].append(dt)
#得到的是每张图片,单个类别的检测结果的集合。
self.evalImgs = defaultdict(list) # per-image per-category evaluation results
self.eval = {} # accumulated evaluation results
def evaluate(self):
'''
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
:return: None
'''
tic = time.time()
print('Running per image evaluation...')
p = self.params
# add backward compatibility if useSegm is specified in params
if not p.useSegm is None:
p.iouType = 'segm' if p.useSegm == 1 else 'bbox'
print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType))
print('Evaluate annotation type *{}*'.format(p.iouType))
# 取出GT中的,img cat id
p.imgIds = list(np.unique(p.imgIds))
if p.useCats:
p.catIds = list(np.unique(p.catIds))
p.maxDets = sorted(p.maxDets)
self.params=p
self._prepare()
# loop through images, area range, max detection number
catIds = p.catIds if p.useCats else [-1]
if p.iouType == 'segm' or p.iouType == 'bbox':
computeIoU = self.computeIoU
elif p.iouType == 'keypoints':
computeIoU = self.computeOks
# ious返回的是一个【M * N】的ndarry, 其中M是在这个img中,catId下有多少个预测的bbox, N是在这个img,catId下有多少个GT
self.ious = {(imgId, catId): computeIoU(imgId, catId) \
for imgId in p.imgIds
for catId in catIds}
evaluateImg = self.evaluateImg
maxDet = p.maxDets[-1]
# self.evalImages 顺序是 K,A,M,I 一共K*A*M*I个单张图片的检测结果,单张图片的特定类别,特定面积范围,特定最大检测个数下的检测结果。
#我们可以按照这个来索引对应的检测结果,在后续accumulate函数中有具体使用。
self.evalImgs = [evaluateImg(imgId, catId, areaRng, maxDet)
for catId in catIds
for areaRng in p.areaRng
for imgId in p.imgIds
]
self._paramsEval = copy.deepcopy(self.params)
toc = time.time()
print('DONE (t={:0.2f}s).'.format(toc-tic))
# 这块用cython写的,主要返回的就是 imgId,catId对应的M*N矩阵,每个值都是对应框的IoU值
def computeIoU(self, imgId, catId):
p = self.params
if p.useCats:
gt = self._gts[imgId,catId]
dt = self._dts[imgId,catId]
else:
#把这张图片的所有类别的所有检测结果进行一个数组的合并
gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]]
if len(gt) == 0 and len(dt) ==0:
return []
#按照网络预测的置信度score排序
inds = np.argsort([-d['score'] for d in dt], kind='mergesort')
dt = [dt[i] for i in inds]
#把超出最大检测结果的bbox剔除
if len(dt) > p.maxDets[-1]:
dt=dt[0:p.maxDets[-1]]
if p.iouType == 'segm':
g = [g['segmentation'] for g in gt]
d = [d['segmentation'] for d in dt]
elif p.iouType == 'bbox':
g = [g['bbox'] for g in gt]
d = [d['bbox'] for d in dt]
else:
raise Exception('unknown iouType for iou computation')
# compute iou between each dt and gt region
iscrowd = [int(o['iscrowd']) for o in gt]
ious = maskUtils.iou(d,g,iscrowd)
return ious
def computeOks(self, imgId, catId):
p = self.params
# dimention here should be Nxm
gts = self._gts[imgId, catId]
dts = self._dts[imgId, catId]
inds = np.argsort([-d['score'] for d in dts], kind='mergesort')
dts = [dts[i] for i in inds]
if len(dts) > p.maxDets[-1]:
dts = dts[0:p.maxDets[-1]]
# if len(gts) == 0 and len(dts) == 0:
if len(gts) == 0 or len(dts) == 0:
return []
ious = np.zeros((len(dts), len(gts)))
sigmas = p.kpt_oks_sigmas
vars = (sigmas * 2)**2
k = len(sigmas)
# compute oks between each detection and ground truth object
for j, gt in enumerate(gts):
# create bounds for ignore regions(double the gt bbox)
g = np.array(gt['keypoints'])
xg = g[0::3]; yg = g[1::3]; vg = g[2::3]
k1 = np.count_nonzero(vg > 0)
bb = gt['bbox']
x0 = bb[0] - bb[2]; x1 = bb[0] + bb[2] * 2
y0 = bb[1] - bb[3]; y1 = bb[1] + bb[3] * 2
for i, dt in enumerate(dts):
d = np.array(dt['keypoints'])
xd = d[0::3]; yd = d[1::3]
if k1>0:
# measure the per-keypoint distance if keypoints visible
dx = xd - xg
dy = yd - yg
else:
# measure minimum distance to keypoints in (x0,y0) & (x1,y1)
z = np.zeros((k))
dx = np.max((z, x0-xd),axis=0)+np.max((z, xd-x1),axis=0)
dy = np.max((z, y0-yd),axis=0)+np.max((z, yd-y1),axis=0)
e = (dx**2 + dy**2) / vars / (gt['area']+np.spacing(1)) / 2
if k1 > 0:
e=e[vg > 0]
ious[i, j] = np.sum(np.exp(-e)) / e.shape[0]
return ious
def evaluateImg(self, imgId, catId, aRng, maxDet):
'''
perform evaluation for single category and image
计算本张图片,特定类别,特定面积阈值,特定最大检测结果下的result。
:return: dict (single image results)
'''
p = self.params
if p.useCats:
# 本张图片特定类别的所有检测结果与GT
gt = self._gts[imgId,catId]
dt = self._dts[imgId,catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]]
if len(gt) == 0 and len(dt) ==0:
return None
for g in gt:
#如果不符合特定面积的阈值,就忽略
if g['ignore'] or (g['area']aRng[1]):
g['_ignore'] = 1
else:
g['_ignore'] = 0
# sort dt highest score first, sort gt ignore last
# gtind 前面都是 ignore为0 的gt 后面都是 ignore为1的gt
gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort')
#挑出满足我们这个特定area阈值下的所有gt
gt = [gt[i] for i in gtind]
dtind = np.argsort([-d['score'] for d in dt], kind='mergesort')
#按照置信度大小挑出满足这个最大检测个数下的所有dt
dt = [dt[i] for i in dtind[0:maxDet]]
iscrowd = [int(o['iscrowd']) for o in gt]
# load computed ious
#得到满足area阈值的gt与所有dt的iou结果 (M * n(gtind))
ious = self.ious[imgId, catId][:, gtind] if len(self.ious[imgId, catId]) > 0 else self.ious[imgId, catId]
#得到我们需要设置的IoU阈值,超过定义为正样本,不符合则为负样本
T = len(p.iouThrs)
G = len(gt)
D = len(dt)
#在每个阈值下的Gt是否得到匹配
gtm = np.zeros((T,G))
#在每个阈值下的Dt是否得到匹配
dtm = np.zeros((T,D))
#所有忽略的gt
gtIg = np.array([g['_ignore'] for g in gt])
#所有忽略的dt
dtIg = np.zeros((T,D))
#如果这张图片存在这个类别的gt与dt
if not len(ious)==0:
for tind, t in enumerate(p.iouThrs): #IoU index, IoU阈值
#按照置信度大小排序好的前 max_Det个dt
for dind, d in enumerate(dt):
# 如果m= -1 代表这个dt没有得到匹配 m代表dt匹配的最好的gt的下标
iou = min([t,1-1e-10])
m = -1
for gind, g in enumerate(gt):
# 如果这个gt已经被其他置信度更好的dt匹配到了,本轮的dt就不能匹配这个gt了。
if gtm[tind,gind]>0 and not iscrowd[gind]:
continue
# 因为gt已经按照ignore排好序了,前面的为0,于是当我们碰到第一个gt的ignore为1时,判断这个dt是否已经匹配到了
#其他的gt,如果m>-1证明并且m对应的gt没有被ignore,就直接结束即可,对应的就是这个dt最好的gt。
if m>-1 and gtIg[m]==0 and gtIg[gind]==1:
break
# 如果计算dt与gt的iou小于目前最佳的IoU,忽略这个gt
if ious[dind,gind] < iou:
continue
# 超过当前最佳的IoU,更新IoU与m的值
iou=ious[dind,gind]
m=gind
# 如果这个dt没有对应的gt与其匹配,继续dt的下一个循环
if m ==-1:
continue
# 把当前dt与第m个gt进行匹配,修改dtm与gtm的值,分别一一对应
dtIg[tind,dind] = gtIg[m] # 如果这个dt对应的最佳gt本身就是被ignore的,就把这个dt也设置为ignore。
dtm[tind,dind] = gt[m]['id']
gtm[tind,m] = d['id']
# set unmatched detections outside of area range to ignore
a = np.array([d['area']aRng[1] for d in dt]).reshape((1, len(dt)))
dtIg = np.logical_or(dtIg, np.logical_and(dtm==0, np.repeat(a,T,0)))
# store results for given image and category
return {
'image_id': imgId,
'category_id': catId,
'aRng': aRng,
'maxDet': maxDet,
'dtIds': [d['id'] for d in dt],
'gtIds': [g['id'] for g in gt],
'dtMatches': dtm,
'gtMatches': gtm,
'dtScores': [d['score'] for d in dt],
'gtIgnore': gtIg,
'dtIgnore': dtIg,
}
def accumulate(self, p = None):
'''
Accumulate per image evaluation results and store the result in self.eval
:param p: input params for evaluation
:return: None
'''
print('Accumulating evaluation results...')
tic = time.time()
if not self.evalImgs:
print('Please run evaluate() first')
# allows input customized parameters
if p is None:
p = self.params
p.catIds = p.catIds if p.useCats == 1 else [-1]
T = len(p.iouThrs) # 多少个ioU的阈值
R = len(p.recThrs) #多少个recall的阈值
K = len(p.catIds) if p.useCats else 1 # 多少个类
A = len(p.areaRng) #多少个面积阈值
M = len(p.maxDets) #多少个最大检测数
precision = -np.ones((T,R,K,A,M)) # -1 for the precision of absent categories
recall = -np.ones((T,K,A,M))
scores = -np.ones((T,R,K,A,M))
# create dictionary for future indexing
_pe = self._paramsEval
catIds = _pe.catIds if _pe.useCats else [-1]
setK = set(catIds)
setA = set(map(tuple, _pe.areaRng))
setM = set(_pe.maxDets)
setI = set(_pe.imgIds)
# get inds to evaluate
k_list = [n for n, k in enumerate(p.catIds) if k in setK] #对应不重复的K的id list 后续同此
m_list = [m for n, m in enumerate(p.maxDets) if m in setM]
a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA]
i_list = [n for n, i in enumerate(p.imgIds) if i in setI]
I0 = len(_pe.imgIds) #多少个图片
A0 = len(_pe.areaRng) #多少个面积阈值
# retrieve E at each category, area range, and max number of detections
# self.evalImgs 索引顺序是 K,A,M,I 所以找到在特定K,A,M下的所有图片,需要按照如下的三维索引
for k, k0 in enumerate(k_list):
Nk = k0*A0*I0 # 当前K0前面过了多少图片与面积阈值
for a, a0 in enumerate(a_list):
Na = a0*I0 #在当前K0前面过了多少阈值
for m, maxDet in enumerate(m_list):
#k0,a0下的所有Images
E = [self.evalImgs[Nk + Na + i] for i in i_list]
E = [e for e in E if not e is None]
if len(E) == 0:
continue
#k0,a0,maxdet下的所有Images的得分
dtScores = np.concatenate([e['dtScores'][0:maxDet] for e in E])
# different sorting method generates slightly different results.
# mergesort is used to be consistent as Matlab implementation.
# k0,a0,maxdet下所有Images得分从高到底的索引 inds
inds = np.argsort(-dtScores, kind='mergesort')
#按照得分从高到低排序
dtScoresSorted = dtScores[inds]
# 在当前k0,a0下,每张图片不超过MaxDet的所有det按照ind排序。 dtm[T,sum(Det) in every imges]
dtm = np.concatenate([e['dtMatches'][:,0:maxDet] for e in E], axis=1)[:,inds]
dtIg = np.concatenate([e['dtIgnore'][:,0:maxDet] for e in E], axis=1)[:,inds]
gtIg = np.concatenate([e['gtIgnore'] for e in E])
#有多少个正样本
npig = np.count_nonzero(gtIg==0 )
if npig == 0:
continue
# 如果dtm对应的匹配gt不为0,且对应的gt没有被忽略,这个dt就是TP tips:[1,0,1,0,1,0]
tps = np.logical_and( dtm, np.logical_not(dtIg) )
#dtm对应的gt为0, 并且这个dt也没有被忽略,这个dt就是FP tips:[0,1,0,1,0,1]
fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg) )
# 按照行的方式(每个Iou阈值下)进行匹配到的累加 每个index也就是到这个置信度的时候有多少个tp,有多少个fp
tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float)
fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float)
for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
tp = np.array(tp) #得到这个Iou下对应的tp tips:[1,0,2,0,3,0]
fp = np.array(fp) #得到这个IoU下对应的fp tips:[0,1,0,2,0,3]
nd = len(tp) #有多少个tp
rc = tp / npig #每个置信度分数下对应的recall 如上述例子 若有3个正样本 则rc=[1/3,1/3,2/3,2/3,1,1]
pr = tp / (fp+tp+np.spacing(1)) #每个阶段对应的精度
q = np.zeros((R,))
ss = np.zeros((R,))
if nd:
recall[t,k,a,m] = rc[-1]
else:
recall[t,k,a,m] = 0
# numpy is slow without cython optimization for accessing elements
# use python array gets significant speed improvement
pr = pr.tolist(); q = q.tolist()
#当前i下的最大精度
for i in range(nd-1, 0, -1):
if pr[i] > pr[i-1]:
pr[i-1] = pr[i]
#找到每个recall发生变化的时候的index,与p.recThrs一一对应,最接近其的值的index
inds = np.searchsorted(rc, p.recThrs, side='left')
try:
for ri, pi in enumerate(inds):
#得到每个recall阈值对应的最大精度,存入q中
q[ri] = pr[pi]
#得到这个recall值下的得分
ss[ri] = dtScoresSorted[pi]
except:
pass
precision[t,:,k,a,m] = np.array(q) # 按照recall的大小存入对应的精度
scores[t,:,k,a,m] = np.array(ss) #存入对应的分数
self.eval = {
'params': p,
'counts': [T, R, K, A, M],
'date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'precision': precision,
'recall': recall,
'scores': scores,
}
toc = time.time()
print('DONE (t={:0.2f}s).'.format( toc-tic))
def summarize(self):
'''
Compute and display summary metrics for evaluation results.
Note this functin can *only* be applied on the default parameter setting
'''
def _summarize( ap=1, iouThr=None, areaRng='all', maxDets=100 ):
p = self.params
iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}'
titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
typeStr = '(AP)' if ap==1 else '(AR)'
iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \
if iouThr is None else '{:0.2f}'.format(iouThr)
# 如果是'all' 就是所有尺度, 如果不是就是特定的尺度
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
# 如果是ap,就从precision中得到对应面积阈值、最大检测数下的精度
if ap == 1:
# dimension of precision: [TxRxKxAxM]
s = self.eval['precision']
# 得到特定IoU下的所有pr
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:,:,:,aind,mind]
# 如果是recall,就取出recall的值
else:
# dimension of recall: [TxKxAxM]
s = self.eval['recall']
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:,:,aind,mind]
if len(s[s>-1])==0:
mean_s = -1
#除去-1 其他的计算平均精度
else:
mean_s = np.mean(s[s>-1])
print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s))
return mean_s
def _summarizeDets():
stats = np.zeros((12,))
stats[0] = _summarize(1) # all iouThr, 所有recall下,所有面积下, 所有类别,在最大检测数100下的的平均AP
# [1]:IoU阈值为0.5 所有recall下,所有面积下, 所有类别,在最大检测数100下的的平均AP
stats[1] = _summarize(1, iouThr=.5, maxDets=self.params.maxDets[2])
# [2]:IoU阈值为0.75 所有recall下,所有面积下, 所有类别,在最大检测数100下的的平均AP
stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2])
#[3]: all iouThr, 所有recall下,small面积下, 所有类别,在最大检测数100下的的平均AP
stats[3] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2])
#[4]: all iouThr, 所有recall下,medium面积下, 所有类别,在最大检测数100下的的平均AP
stats[4] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2])
#[5]: all iouThr, 所有recall下,large面积下, 所有类别,在最大检测数100下的的平均AP
stats[5] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2])
#[6]: all iouThr,所有面积下, 所有类别,在最大检测数1下的的平均recall
stats[6] = _summarize(0, maxDets=self.params.maxDets[0])
#[7]: all iouThr,所有面积下, 所有类别,在最大检测数10下的的平均recall
stats[7] = _summarize(0, maxDets=self.params.maxDets[1])
# [8]: all iouThr,所有面积下, 所有类别,在最大检测数100下的的平均recall
stats[8] = _summarize(0, maxDets=self.params.maxDets[2])
#[9]: all iouThr,small面积下, 所有类别,在最大检测数100下的的平均recall
stats[9] = _summarize(0, areaRng='small', maxDets=self.params.maxDets[2])
# [10]: all iouThr,medium面积下, 所有类别,在最大检测数100下的的平均recall
stats[10] = _summarize(0, areaRng='medium', maxDets=self.params.maxDets[2])
# [11]: all iouThr,large面积下, 所有类别,在最大检测数100下的的平均recall
stats[11] = _summarize(0, areaRng='large', maxDets=self.params.maxDets[2])
return stats
def _summarizeKps():
stats = np.zeros((10,))
stats[0] = _summarize(1, maxDets=20)
stats[1] = _summarize(1, maxDets=20, iouThr=.5)
stats[2] = _summarize(1, maxDets=20, iouThr=.75)
stats[3] = _summarize(1, maxDets=20, areaRng='medium')
stats[4] = _summarize(1, maxDets=20, areaRng='large')
stats[5] = _summarize(0, maxDets=20)
stats[6] = _summarize(0, maxDets=20, iouThr=.5)
stats[7] = _summarize(0, maxDets=20, iouThr=.75)
stats[8] = _summarize(0, maxDets=20, areaRng='medium')
stats[9] = _summarize(0, maxDets=20, areaRng='large')
return stats
if not self.eval:
raise Exception('Please run accumulate() first')
iouType = self.params.iouType
if iouType == 'segm' or iouType == 'bbox':
summarize = _summarizeDets
elif iouType == 'keypoints':
summarize = _summarizeKps
self.stats = summarize()
def __str__(self):
self.summarize()
class Params:
'''
Params for coco evaluation api
'''
def setDetParams(self):
self.imgIds = []
self.catIds = []
# np.arange causes trouble. the data point on arange is slightly larger than the true value
self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True)
self.maxDets = [1, 10, 100]
self.areaRng = [[0 ** 2, 1e5 ** 2], [0 ** 2, 32 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]]
self.areaRngLbl = ['all', 'small', 'medium', 'large']
self.useCats = 1
def setKpParams(self):
self.imgIds = []
self.catIds = []
# np.arange causes trouble. the data point on arange is slightly larger than the true value
self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True)
self.maxDets = [20]
self.areaRng = [[0 ** 2, 1e5 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]]
self.areaRngLbl = ['all', 'medium', 'large']
self.useCats = 1
self.kpt_oks_sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62,.62, 1.07, 1.07, .87, .87, .89, .89])/10.0
def __init__(self, iouType='segm'):
if iouType == 'segm' or iouType == 'bbox':
self.setDetParams()
elif iouType == 'keypoints':
self.setKpParams()
else:
raise Exception('iouType not supported')
self.iouType = iouType
# useSegm is deprecated
self.useSegm = None