使用Netron来可视化PyTorch的模型结构

参考链接: Netron Viewer for neural network, deep learning, and machine learning models
参考链接: GitHub lutzroeder / netron

运行代码,生成两个文件,分别保存整个模型和模型的参数:

import torch
import torchvision
from torchvision import datasets, transforms
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
import time
import os
model_path = 'model_name_Conv.pth'
model_params_path = 'params_name_Conv.pth'

Use_gpu = torch.cuda.is_available()

transform = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Normalize(
            mean = [0.5],
            std = [0.5]   
        )
    ]
)


dataset_train = datasets.MNIST(
    root = "./data",
    transform = transform,
    train = True,
    download = True
)

dataset_test = datasets.MNIST(
    root = "./data",
    transform = transform,
    train = False #,
    #download = True #
)

train_load = torch.utils.data.DataLoader(
    dataset = dataset_train,
    batch_size = 64,
    shuffle = True
)


test_load = torch.utils.data.DataLoader(
    dataset = dataset_test,
    batch_size = 64,
    shuffle = True
)


class AutoEncoder(torch.nn.Module):

    def __init__(self):
        super(AutoEncoder, self).__init__()
        self.encoder = torch.nn.Sequential(
            torch.nn.Conv2d(1,64,kernel_size=3,stride=1,padding=1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(kernel_size=2,stride=2),
            torch.nn.Conv2d(64,128,kernel_size=3,stride=1,padding=1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(kernel_size=2,stride=2)
        )

        self.decoder = torch.nn.Sequential(
            # 上采样层,即torch.nn.Upsample类。这个类的作用就是对我们提取到的
            # 核心特征进行解压,实现图片的重写构建,传递给它的参数一共有两个,
            # 分别是scale_factor和mode:前者用于确定解压的倍数;后者用于定义图
            # 片重构的模式,可选择的模式有nearest、linear、bilinear和trilinear,
            # 其中nearest是最邻近法,linear是线性插值法,bilinear是双线性插值
            # 法,trilinear是三线性插值法。
            torch.nn.Upsample(scale_factor=2,mode="nearest"),
            torch.nn.Conv2d(128,64,kernel_size=3,stride=1,padding=1),
            torch.nn.ReLU(),
            torch.nn.Upsample(scale_factor=2,mode="nearest"),
            torch.nn.Conv2d(64,1,kernel_size=3,stride=1,padding=1)
        )

    def forward(self,input):
        output = self.encoder(input)
        output = self.decoder(output)
        return output

model = AutoEncoder()
if Use_gpu:
    model = model.cuda()
#print(model)

optimizer = torch.optim.Adam(model.parameters())
loss_f = torch.nn.MSELoss()



# has_been_trained = os.path.isfile(model_path)
has_been_trained = False
if has_been_trained:
    epoch_n = 0
else:
    epoch_n = 10
    
time_open = time.time()
for epoch in range(epoch_n):
    running_loss = 0.0

    print("Epoch {}/{}".format(epoch + 1,epoch_n))
    print("-"*20)
    # cxq=1
    for data in train_load:
        # print("$$$$$$$$$$$$",cxq)
        # cxq+=1
        X_train,_ = data
        noisy_X_train = X_train + 0.5*torch.randn(X_train.shape)
        noisy_X_train = torch.clamp(noisy_X_train,0.0,1.0)
        if Use_gpu:
            X_train, noisy_X_train = Variable(X_train.cuda()), Variable(noisy_X_train.cuda())
        else:
            X_train, noisy_X_train = Variable(X_train), Variable(noisy_X_train)
        train_pre = model(noisy_X_train)
        loss = loss_f(train_pre, X_train)  
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        running_loss += loss.item()

    print("Loss is:{:.4f}".format(running_loss/len(dataset_train)))

time_end = time.time() - time_open
print("程序运行时间:{}分钟{}秒...".format(int(time_end/60),int(time_end)%60))
###################################################################################



if has_been_trained:
    model = torch.load(model_path)
else:
    torch.save(model, model_path)
torch.save(model.state_dict(), model_params_path)

X_test,_ = next(iter(test_load))
# print(X_test.shape)  #torch.Size([64, 1, 28, 28])
X_test = X_test[0:4,:,:,:]
img_original = torchvision.utils.make_grid(X_test)
img_original = img_original.numpy().transpose(1,2,0)
mean = [0.5]
std = [0.5]
img_original = img_original * std + mean
img_original = np.clip(img_original,0.0,1.0) 
plt.figure("原始图像")
plt.imshow(img_original)
#plt.show()

mosaic = 0.5 * torch.randn(X_test.shape)
img_mosaic = torchvision.utils.make_grid(X_test + mosaic)
img_mosaic = img_mosaic.numpy().transpose(1,2,0)
mean = [0.5]
std = [0.5]
img_mosaic = img_mosaic * std + mean
img_mosaic = np.clip(img_mosaic,0.0,1.0) 
plt.figure("马赛克图像")
plt.imshow(img_mosaic)
#plt.show()

img_demosaic = X_test + mosaic
img_demosaic = torch.clamp(img_demosaic,0.0,1.0).cuda()
img_demosaic = Variable(img_demosaic)
img_demosaic = model(img_demosaic)
img_demosaic = img_demosaic.cpu().data
img_demosaic = torchvision.utils.make_grid(img_demosaic)
img_demosaic = img_demosaic.numpy().transpose(1,2,0)
mean = [0.5]
std = [0.5]
img_demosaic = img_demosaic * std + mean
img_demosaic = np.clip(img_demosaic,0.0,1.0) 
plt.figure("去除马赛克的图像")
plt.imshow(img_demosaic)
plt.show()


生成文件:params_name_Conv.pth和model_name_Conv.pth.

在这里插入图片描述

使用Netron打开这两个文件,查看其内容:

使用Netron来可视化PyTorch的模型结构_第1张图片

使用Netron来可视化PyTorch的模型结构_第2张图片

你可能感兴趣的:(使用Netron来可视化PyTorch的模型结构)