- 开源人工智能模型框架:探索与实践
CodeJourney.
人工智能能源
摘要本文深入探讨了开源人工智能模型框架,旨在为研究人员、开发者及相关从业者提供全面的理解与参考。通过对多个主流开源框架,如TensorFlow、PyTorch、Keras、Detectron2、OpenCV、HuggingFaceTransformers、AllenNLP、MindSpore和Fastai的详细分析,阐述其特点、应用场景、优势与不足,并结合具体示例说明其使用方法,同时配以相关架构图
- Java 大视界 -- Java 开发 Spark 应用:RDD 操作与数据转换
一只蜗牛儿
javaspark开发语言
ApacheSpark是一个强大的分布式计算框架,提供了高效的数据处理能力,广泛应用于大数据分析与机器学习。Spark提供了多种高级API,支持批处理和流处理。Spark提供了两种主要的数据抽象:RDD(弹性分布式数据集)和DataFrame。本文将重点介绍如何使用Java开发Spark应用,并深入探讨RDD的操作与数据转换。一、Spark环境搭建首先,确保您的环境中安装了Java和Spark。您
- 【C#深度学习之路】如何使用C#读取pickle类型的大模型文件
来瓶霸王防脱发
C#深度学习之路c#机器学习
【C#深度学习之路】如何使用C#读取pickle类型的大模型文件背景Pickle文件的结构及读取思路读取方法以压缩文件的方式加载Pickle类型文件读取Header的内容读取tensor的权重值该方法的不足总结本文为原创文章,若需要转载,请注明出处。原文地址:https://blog.csdn.net/qq_30270773/article/details/141367057项目对应的Github
- 【C#深度学习之路】如何使用C#实现Yolov8模型的训练和推理
来瓶霸王防脱发
C#深度学习之路c#机器学习图像处理视觉检测YOLO
【C#深度学习之路】如何使用C#实现Yolov8模型的训练和推理项目背景算法实现模型结构项目展望写在最后项目下载链接本文为原创文章,若需要转载,请注明出处。原文地址:https://blog.csdn.net/qq_30270773/article/details/143529308项目对应的Github地址:https://github.com/IntptrMax/YoloSharpC#深度学习
- 【C#深度学习之路】如何使用C#实现Yolov11模型的训练和推理
来瓶霸王防脱发
C#深度学习之路c#深度学习YOLO
【C#深度学习之路】如何使用C#实现Yolov11模型的训练和推理项目背景算法实现模型结构项目展望写在最后项目下载链接本文为原创文章,若需要转载,请注明出处。原文地址:https://blog.csdn.net/qq_30270773/article/details/143722404项目对应的Github地址:https://github.com/IntptrMax/YoloSharpC#深度学
- AlexNet:开启深度学习图像识别新纪元
池央
深度学习人工智能
一、引言在深度学习的璀璨星空中,AlexNet无疑是一颗极为耀眼的明星。它于2012年横空出世,并在ImageNet竞赛中一举夺冠,这一历史性的突破彻底改变了计算机视觉领域的发展轨迹,让全世界深刻认识到深度卷积神经网络在图像识别任务中的巨大潜力,从而掀起了深度学习研究与应用的热潮。二、AlexNet网络架构详解(一)输入层AlexNet的输入图像通常为224x224x3的彩色图像。这一尺寸的确定是
- 拯救者电脑安装Windows和Ubuntu双系统遇到黑屏或者花屏问题的解决方法,亲测有效
我爱猪肉炖粉条
ubuntu深度学习
最近想在电脑上跑深度学习,有一定基础的都知道,ubuntu更适合gpu、apex以及其他加速的使用,如果在Windows上总是遇到各种各样的问题,所以我给电脑安装了双系统。装系统的过程此处忽略,随便找个教程都可以。总结一下就是在C盘压缩一定的空间(比如80G),然后通过U盘工具制作一个Ubuntu启动盘,把系统安装到压缩的那个盘里。我使用的电脑是拯救者R7000P,英伟达RTX2060,AMD处理
- 小白也能懂的 Python 入门指南(1)——Python 的前世今生
荆州克莱
面试题汇总与解析springcloudspringbootspring技术css3
Lifeisshort.YouneedPython.——BruceEckel上边这句话是Python社区的名言,翻译过来就是“人生苦短,我用Python”,由此可见,Python在很多人心中已成为最中意的编程语言。在人工智能、机器学习日趋火热的时代,Python又赶上了一波AI的热潮,即使你没系统的学习过它,相信你也一定听说过吧,如果你也对Python产生了浓厚的兴趣,跟我一起来了解下它的前世今生
- AI大模型
荆州克莱
面试题汇总与解析技术css3springcloudspringbootspring
系列简书文章目录https://www.jianshu.com/p/d47d5cdc8a3e本篇目录AI大模型什么是AI大模型AI大模型,通常指的是在人工智能领域中,特别是机器学习和深度学习范畴内,具有巨大参数量和复杂结构的模型。这些模型通过使用大规模数据集和先进的计算硬件进行训练,能够学习到数据中的复杂模式和特征,从而在多种任务上展现出卓越的性能。特点包括:参数量大:AI大模型的参数数量往往达到
- 迎接2025年:人工智能引领的新时代变革
海森大数据
人工智能
随着科技的飞速发展,我们正站在新时代的门槛上,准备迎接由人工智能(AI)驱动的深刻变革。美国《福布斯》杂志的一篇文章《人人都必须为2025年的十大人工智能趋势做好准备》为我们描绘了未来几年AI领域的壮丽图景。这些趋势不仅预示着技术的革新,更反映了我们如何适应和塑造这个由AI主导的新世界。一、到2025年,人工智能将不再是威胁人类工作的“冷面杀手”,而是成为增强人类能力的得力助手。通过与AI的紧密合
- 深度学习:从基础到实践(上、下册)(安德鲁·格拉斯纳)
fyjgfyjfg
深度学习人工智能
(pdf):python33+(0m深度学习概述:深度学习是机器学习的一个分支,它试图通过使用深层神经网络来模拟人脑的学习过程。随机性与基础统计学:在深度学习中,随机性起着重要作用,了解基础统计学有助于更好地理解深度学习中的随机过程和不确定性。训练与测试:深度学习模型的训练过程包括使用训练数据来优化模型参数,而测试过程则使用测试数据来评估模型的性能。过拟合与欠拟合:过拟合是指模型在训练数据上表现过
- AI代理的分类体系与发展路径:从概念重构到基础设施升级
XianxinMao
人工智能
目前AI代理的定义过于宽泛,需要更详细的分类以促进研究和应用的发展当前定义的宽泛性AI代理(AIAgents)作为人工智能领域的重要概念,涵盖了从简单的自动化工具到复杂的自主决策系统的广泛范围。然而,这种宽泛的定义带来了诸多问题:概念模糊:不同研究者和开发者对AI代理的理解存在差异,缺乏统一标准,导致交流和合作困难。研究方向不明确:宽泛的定义使得研究人员难以聚焦具体问题,影响研究的深度和效率。应用
- # 边缘计算的未来:推动实时智能化应用的关键技术 随着物联网(IoT)、5G和人工智能(AI)的发展,边缘计算正在成为推动智能化应用的重要技术之一。通过在设备本地或网络边缘进行数据处理,边缘计算能够
小zzzzzzzz
人工智能边缘计算物联网
边缘计算的未来:推动实时智能化应用的关键技术随着物联网(IoT)、5G和人工智能(AI)的发展,边缘计算正在成为推动智能化应用的重要技术之一。通过在设备本地或网络边缘进行数据处理,边缘计算能够减少延迟、降低带宽消耗,并在需要快速决策的场景中提供实时响应能力。与云计算相比,边缘计算能够在网络的“边缘”进行更多的智能处理,从而优化整体系统的效率和可靠性。本文将探讨边缘计算的核心概念、应用场景、未来发展
- 智能视界·大模型驱动视频矩阵管理系统
大霸王龙
python音视频矩阵服务器python大数据大模型
开头先配两张ER图一张不带字段,一张带字段,剩下的内容按需拿取1.产品介绍产品名称:智能视界·大模型驱动视频矩阵管理系统主要功能:智能视频分析与识别功能介绍:该系统集成先进的人工智能大模型,能够实时对视频流进行深度分析,自动识别场景中的人物、车辆、异常行为(如入侵、徘徊、遗留物等)及特定事件(如火灾、烟雾等)。通过精准识别与分类,有效减少误报率,提升安全监控效率。使用方式:用户可通过直观的操作界面
- DeepSeek Artifacts:前端开发的新利器
人工智能
DeepSeekArtifacts:前端开发的新利器人工智能领域创新不断,DeepSeekV3便是其中备受瞩目的工具之一。这款轻量级模型凭借在大语言模型(LLM)排行榜上的优异表现,以及亲民的价格和卓越的性能,在人工智能社区中广受关注。然而,它的姊妹工具DeepSeekArtifacts却因截然不同的缘由引发了热议。在本文中,我们将深入探究DeepSeekArtifacts。这是HuggingFa
- 《量子计算对人工智能发展的深远影响》
cc++人工智能深度学习
在科技发展的浪潮中,量子计算与人工智能无疑是两颗璀璨的明星,二者的融合正引领着一场深刻的科技变革.量子计算的独特之处在于其利用量子比特的叠加和纠缠特性,能够实现并行计算,从而在处理复杂问题时展现出超越传统计算的巨大潜力.这种强大的计算能力为人工智能的发展带来了诸多积极影响。加速机器学习训练机器学习,尤其是深度学习,通常需要处理海量数据和复杂的模型训练,耗时极长。量子计算的并行性可使训练过程大幅加速
- Python基于YOLOv8和OpenCV实现车道线和车辆检测
old_power
计算机视觉YOLOopencv计算机视觉python
使用YOLOv8(YouOnlyLookOnce)和OpenCV实现车道线和车辆检测,目标是创建一个可以检测道路上的车道并识别车辆的系统,并估计它们与摄像头的距离。该项目结合了计算机视觉技术和深度学习物体检测。1、系统主要功能车道检测:使用边缘检测和霍夫线变换检测道路车道。汽车检测:使用YOLOv8模型识别汽车并在汽车周围绘制边界框。距离估计:使用边界框大小计算检测到的汽车与摄像头的距离。2、环境
- 2024年诺贝尔奖揭晓:机遇与挑战并存
人工智能aigcopenai
ChatGPT竟然也不相信诺贝尔奖结果!2024年诺贝尔奖对科研领域来说是个重要的时刻。诺贝尔奖可谓是科学界的“奥斯卡”,每年的获奖者都会引起广泛关注。今年,瑞典皇家科学院公布,约翰·J·霍普菲尔德和杰弗里·E·辛顿荣获诺贝尔物理学奖,这个消息让不少人感到惊讶。诺贝尔物理学奖:意外的突破一次颁奖的震撼诺贝尔奖的官方网站指出,霍普菲尔德和辛顿因其在人工神经网络和机器学习领域的基础性研究而获奖。他们的
- 每天五分钟深度学习框架pytorch:快速搭建VGG网络的基础模块VGG块
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorch网络卷积神经网络卷积层人工智能
本文重点前面我们介绍了VGG神经网络,我们知道VGG是由许多的VGG块构成,那么本文我们将使用pytorch搭建VGG块代码实现:importtorchfromtorchimportnndefvgg_block(num_convs,in_channels,out_channels):net=[nn.Conv2d(in_channels,out_channels,kernel_size=3,padd
- 探秘6-DoF GraspNet:面向对象操纵的变分抓取生成
庞锦宇
探秘6-DoFGraspNet:面向对象操纵的变分抓取生成项目地址:https://gitcode.com/gh_mirrors/py/pytorch_6dof-graspnet在人工智能和机器人领域,我们正逐步接近让机器模拟人类的手部动作,实现精准的六自由度(6-DoF)物体抓取。6-DoFGraspNet是一项革新性的技术,现在,这个强大的工具已有了PyTorch实现。本文将详细介绍这一开源项
- 微软:全球每天网络攻击超6亿次
FreeBuf-
资讯microsoft
《2024年微软数字防御报告》揭示了一个复杂的全球网络安全格局,每天发生超过6亿次网络攻击。报告强调了勒索软件、网络钓鱼和身份泄露事件的增加,以及网络犯罪团伙和国家行为者之间的合作。它强调了人工智能在攻击和防御中的重要作用,敦促组织采取主动的、多层次的策略来应对这些不断演变的威胁。核心观点每天有6亿次网络攻击针对微软客户。勒索软件攻击比去年增加了2.75倍。技术诈骗激增400%,每天发生超过10万
- ChatRec的实践:交互式推荐系统的进步
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
交互式推荐系统,Chat-Rec,对话推荐,自然语言处理,机器学习,用户行为分析,个性化推荐1.背景介绍推荐系统作为互联网时代的重要技术支柱,在电商、社交媒体、内容平台等领域发挥着至关重要的作用。传统的推荐系统主要依赖于用户历史行为数据,例如浏览记录、购买历史等,通过协同过滤、内容过滤等算法,预测用户潜在的兴趣并提供个性化推荐。然而,随着用户需求的不断变化和个性化的程度不断提高,传统的推荐系统面临
- AI如何帮助电商企业进行数据分析
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
电商数据分析,人工智能,机器学习,深度学习,推荐系统,预测模型,客户画像1.背景介绍在当今数字化时代,电商行业蓬勃发展,数据成为企业最重要的资产。电商企业每天都会产生海量的数据,包括用户行为、商品信息、交易记录等。如何有效地分析这些数据,挖掘其中的价值,对于电商企业的运营、营销和发展至关重要。传统的数据分析方法往往难以应对海量数据的处理和复杂分析需求,而人工智能(AI)技术的出现为电商数据分析带来
- 大规模语言模型从理论到实践 大语言模型预训练数据
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践:大语言模型预训练数据关键词:大规模语言模型、预训练数据、数据集选择、数据清洗、数据增强、数据集评估、数据集扩展1.背景介绍1.1问题的由来随着深度学习和大规模神经网络的发展,大型语言模型(LargeLanguageModels,LLMs)成为了自然语言处理(NLP)领域的一项突破性技术。LLMs能够生成流畅且具有上下文关联性的文本,这得益于它们在海量文本数据上的预训练。
- 神经架构搜索在大模型效率优化中的应用
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
神经架构搜索,大模型,效率优化,自动机器学习,深度学习1.背景介绍近年来,深度学习模型取得了令人瞩目的成就,在图像识别、自然语言处理、语音识别等领域展现出强大的能力。然而,随着模型规模的不断扩大,训练和部署这些大模型也带来了巨大的挑战。计算资源消耗巨大:大模型的训练需要大量的计算资源,例如高性能GPU和TPU,这导致训练成本高昂,难以普及。内存占用量大:大模型的参数量庞大,需要大量的内存进行存储和
- 机器学习——逻辑回归
口_天_光健
python机器学习逻辑回归
逻辑回归技术文档目录简介逻辑回归的基本概念逻辑回归的数学原理逻辑回归的实现步骤代码示例逻辑回归的应用逻辑回归的优化方法逻辑回归的局限性逻辑回归的扩展与变体逻辑回归与其他算法的对比总结简介逻辑回归(LogisticRegression)是一种广泛应用于分类问题的统计方法。尽管名字中有“回归”二字,但逻辑回归实际上是一种分类算法,主要用于二分类问题,但也可以通过扩展用于多分类问题。逻辑回归通过使用逻辑
- 卷积神经网络(CNN):深度学习中的核心模型
任义礼智信
深度学习cnn人工智能
引言卷积神经网络(ConvolutionalNeuralNetworks,CNNs)是深度学习领域的一种重要模型,广泛应用于图像处理、计算机视觉、自然语言处理等多个领域。CNN凭借其卓越的特征提取能力和参数共享机制,已成为计算机视觉任务中最主流的算法之一。本文将深入探讨CNN的基本原理、结构组件、应用场景及其发展方向。CNN的基本原理CNN是一种特殊的前馈神经网络(FeedforwardNeura
- 【机器学习:十五、神经网络的编译和训练】
KeyPan
机器学习机器学习神经网络人工智能深度学习pytorchubuntulinux
1.TensorFlow实现代码TensorFlow是深度学习中最为广泛使用的框架之一,提供了灵活的接口来构建、编译和训练神经网络。以下是实现神经网络的一个完整代码示例,以“手写数字识别”为例:importtensorflowastffromtensorflow.kerasimportlayers,models#加载MNIST数据集(x_train,y_train),(x_test,y_test)
- 【机器学习:十六、其他的激活函数】
KeyPan
机器学习机器学习人工智能算法服务器运维ubuntu
1.Sigmoid激活函数的替代方案Sigmoid激活函数在神经网络中曾广泛使用,其数学公式为:σ(x)=11+e−x\sigma(x)=\frac{1}{1+e^{-x}}σ(x)=1+e−x1输出范围为(0,1),适合二分类问题。但随着深度学习的发展,Sigmoid函数逐渐被替代,主要原因包括:梯度消失问题:当输入绝对值较大时,梯度趋近于零,导致权重更新困难。非零中心问题:输出值始终为正,可能
- 深度学习图像算法中的网络架构:Backbone、Neck 和 Head 详解
肥猪猪爸
#深度学习深度学习算法人工智能数据结构神经网络计算机视觉机器学习
深度学习已经成为图像识别领域的核心技术,特别是在目标检测、图像分割等任务中,深度神经网络的应用取得了显著进展。在这些任务的网络架构中,通常可以分为三个主要部分:Backbone、Neck和Head。这些部分在整个网络中扮演着至关重要的角色,它们各自处理不同的任务,从特征提取到最终的预测输出,形成了一个完整的图像处理流程。本文将详细介绍这三部分的作用以及它们在目标检测和图像分割中的应用,帮助大家更好
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要