本文将使用一个来自NASA测试不同飞机机翼噪音的数据集,通过梯度下降、随机梯度下降、小批量随机梯度下降这3种优化算法进行模型训练,比较3种训练结果的差异。
梯度下降:在每一次迭代中,梯度下降使用整个训练数据集来计算梯度,一个epoch周期内参数只更新一次。
随机梯度下降:在每次迭代中,只随机采样一个样本来计算梯度,一个epoch周期内会进行样本数目次参数更新。
小批量随机梯度下降:在每次迭代中随机均匀采样多个样本来组成一个小批量来计算梯度,一个epoch周期内会进行(样本数目/批量大小)次的参数更新。
获取数据集方法,关注GZH:阿旭算法与机器学习,回复“梯度下降”即可。
该数据集为NASA的测试不同飞机机翼噪音的数据集,数据集一共包含1503个样本,每个样本包含5个特征与1个标签,下面我们将使用该数据集的前1,500个样本进行模型的训练,并比较各个优化算法的区别。
数据集展示:
%matplotlib inline
import numpy as np
import time
import torch
from torch import nn, optim
import sys
import d2lzh_pytorch as d2l
def get_data_ch7():
data = np.genfromtxt('./data/airfoil_self_noise.dat', delimiter='\t')
# 标准化数据
data = (data - data.mean(axis=0)) / data.std(axis=0)
return torch.tensor(data[:1500, :-1], dtype=torch.float32), \
torch.tensor(data[:1500, -1], dtype=torch.float32) # 前1500个样本(每个样本包含5个特征)
features, labels = get_data_ch7()
features.shape # torch.Size([1500, 5])
下面实现一个通用的训练函数,它初始化一个线性回归模型,然后可以使用梯度下降、随机梯度下降和小批量随机梯度下降算法来训练模型。
# 参数优化器
def sgd(params, states, hyperparams):
for p in params:
p.data -= hyperparams['lr'] * p.grad.data
# 训练函数
def train_ch7(optimizer_fn, states, hyperparams, features, labels,
batch_size=10, num_epochs=2):
# 初始化模型,初始化一个线性回归模型
net, loss = d2l.linreg, d2l.squared_loss
w = torch.nn.Parameter(torch.tensor(np.random.normal(0, 0.01, size=(features.shape[1], 1)), dtype=torch.float32),
requires_grad=True)
b = torch.nn.Parameter(torch.zeros(1, dtype=torch.float32), requires_grad=True)
def eval_loss():
return loss(net(features, w, b), labels).mean().item()
ls = [eval_loss()]
data_iter = torch.utils.data.DataLoader(
torch.utils.data.TensorDataset(features, labels), batch_size, shuffle=True)
for _ in range(num_epochs):
start = time.time()
for batch_i, (X, y) in enumerate(data_iter):
l = loss(net(X, w, b), y).mean() # 使用平均损失
# 梯度清零
if w.grad is not None:
w.grad.data.zero_()
b.grad.data.zero_()
l.backward()
optimizer_fn([w, b], states, hyperparams) # 迭代模型参数
if (batch_i + 1) * batch_size % 100 == 0:
ls.append(eval_loss()) # 每100个样本记录下当前训练误差
# 打印结果和作图
print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))
d2l.set_figsize()
d2l.plt.plot(np.linspace(0, num_epochs, len(ls)), ls)
d2l.plt.xlabel('epoch')
d2l.plt.ylabel('loss')
当批量大小为样本总数1,500时,使用的是梯度下降。梯度下降的1个迭代周期对模型参数只迭代1次。可以看到6次迭代后目标函数值(训练损失)的下降趋向了平稳。
def train_sgd(lr, batch_size, num_epochs=2):
train_ch7(sgd, None, {'lr': lr}, features, labels, batch_size, num_epochs)
train_sgd(1, 1500, 6)
输出:
loss: 0.245426, 0.013536 sec per epoch
当批量大小为1时,优化使用的是随机梯度下降。随机梯度下降中,每处理一个样本会更新一次自变量(模型参数),一个迭代周期里会对自变量进行1,500次更新。可以看到,目标函数值的下降在1个迭代周期后就变得较为平缓。
train_sgd(0.005, 1)
输出:
loss: 0.246051, 0.531435 sec per epoch
虽然随机梯度下降和梯度下降在一个迭代周期里都处理了1,500个样本,但实验中随机梯度下降的一个迭代周期耗时更多。这是因为随机梯度下降在一个迭代周期里做了更多次的自变量迭代,而且单样本的梯度计算难以有效利用矢量计算。
当批量大小为10时,优化使用的是小批量随机梯度下降。它在每个迭代周期的耗时介于梯度下降和随机梯度下降的耗时之间。
train_sgd(0.05, 10)
输出:
loss: 0.242805, 0.078792 sec per epoch
在PyTorch里可以直接通过创建optimizer
实例来调用优化算法。这能让实现更简洁。下面实现一个通用的训练函数,它通过优化算法的函数optimizer_fn
和超参数optimizer_hyperparams
来创建optimizer
实例。
def train_pytorch_ch7(optimizer_fn, optimizer_hyperparams, features, labels,
batch_size=10, num_epochs=2):
# 初始化模型
net = nn.Sequential(
nn.Linear(features.shape[-1], 1)
)
loss = nn.MSELoss()
optimizer = optimizer_fn(net.parameters(), **optimizer_hyperparams)
def eval_loss():
return loss(net(features).view(-1), labels).item() / 2
ls = [eval_loss()]
data_iter = torch.utils.data.DataLoader(
torch.utils.data.TensorDataset(features, labels), batch_size, shuffle=True)
for _ in range(num_epochs):
start = time.time()
for batch_i, (X, y) in enumerate(data_iter):
# 除以2是为了和train_ch7保持一致, 因为squared_loss中除了2
l = loss(net(X).view(-1), y) / 2
optimizer.zero_grad()
l.backward()
optimizer.step()
if (batch_i + 1) * batch_size % 100 == 0:
ls.append(eval_loss())
# 打印结果和作图
print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))
d2l.set_figsize()
d2l.plt.plot(np.linspace(0, num_epochs, len(ls)), ls)
d2l.plt.xlabel('epoch')
d2l.plt.ylabel('loss')
下面重复第3小节中的实验。
train_pytorch_ch7(optim.SGD, {"lr": 0.05}, features, labels, batch_size=1500, num_epochs=6)
输出:
loss: 0.701703, 0.013035 sec per epoch
train_pytorch_ch7(optim.SGD, {"lr": 0.05}, features, labels, batch_size=1, num_epochs=2)
输出:
loss: 0.288860, 0.586868 sec per epoch
train_pytorch_ch7(optim.SGD, {"lr": 0.05}, features, labels, batch_size=10, num_epochs=2)
输出:
loss: 0.242063, 0.075203 sec per epoch
如果文章内容对你有帮助,感谢点赞+关注!
关注下方GZH:阿旭算法与机器学习,回复:“梯度下降”即可获取本文数据集、源码与项目文档,欢迎共同学习交流