- BART&BERT
Ambition_LAO
深度学习
BART和BERT都是基于Transformer架构的预训练语言模型。模型架构:BERT(BidirectionalEncoderRepresentationsfromTransformers)主要是一个编码器(Encoder)模型,它使用了Transformer的编码器部分来处理输入的文本,并生成文本的表示。BERT特别擅长理解语言的上下文,因为它在预训练阶段使用了掩码语言模型(MLM)任务,即
- AI大模型的架构演进与最新发展
季风泯灭的季节
AI大模型应用技术二人工智能架构
随着深度学习的发展,AI大模型(LargeLanguageModels,LLMs)在自然语言处理、计算机视觉等领域取得了革命性的进展。本文将详细探讨AI大模型的架构演进,包括从Transformer的提出到GPT、BERT、T5等模型的历史演变,并探讨这些模型的技术细节及其在现代人工智能中的核心作用。一、基础模型介绍:Transformer的核心原理Transformer架构的背景在Transfo
- go语言安装快速入门
吉祥鸟hu
[TOC]go语言是什么Go是一个开源的编程语言,它能让构造简单、可靠且高效的软件变得容易。Go是从2007年末由RobertGriesemer,RobPike,KenThompson主持开发,后来还加入了IanLanceTaylor,RussCox等人,并最终于2009年11月开源,在2012年早些时候发布了Go1稳定版本。现在Go的开发已经是完全开放的,并且拥有一个活跃的社区如何安装环境笔者这
- 解决BERT模型bert-base-chinese报错(无法自动联网下载)
搬砖修狗
bert人工智能深度学习python
一、下载问题hugging-face是访问BERT模型的最初网站,但是目前hugging-face在中国多地不可达,在代码中涉及到该网站的模型都会报错,本文我们就以bert-base-chinese报错为例,提供一个下载到本地的方法来解决问题。二、网站google-bert(BERTcommunity)Thisorganizationismaintainedbythetransformerstea
- ROS yaml参数文件的使用
Sun Shiteng
ROS
举个例子,若在params.yaml文件中定义如下参数LidarImageFusion:points_src:"/hilbert_h/deskew/cloud_info"image_src:"/usb_cam0/image_raw"camera_info_src:"/home/hdj/fusion_slam/Color_SLAM_ws/src/hilbert_h/config/firefly_8s
- 《昇思 25 天学习打卡营第 25 天 | 基于 MindSpore 实现 BERT 对话情绪识别 》
Sam9029
Mindscope模型学习深度学习
《昇思25天学习打卡营第25天|基于MindSpore实现BERT对话情绪识别》活动地址:https://xihe.mindspore.cn/events/mindspore-training-camp签名:Sam9029环境配置确保安装了正确版本的MindSpore和MindNLP库。!pipuninstallmindspore-y!pipinstall-ihttps://pypi.mirror
- Go的学习路线
JSU-YSJ
Golang基础学习golang学习开发语言
Golang简介go语言Go(又称Golang)是Google的RobertGriesemer,RobPike及KenThompson开发的一种静态强类型、编译型语言。Go语言语法与C相近,但功能上有:内存安全,GC(垃圾回收),结构形态及CSP-style并发计算。为什么要学习Go现有的编程语言风格各异,不能完全的运动好电脑的硬件,不高效,及各种优势于一身的语言Golang(谷歌创建)兼容静态编
- 爱无常,恨无常,珍惜好时光
爱博文学翻译社
爱无常,恨无常,珍惜好时光编辑:AlbertXu片尾曲《匆匆那年》很好听,看的过程中感觉美好、惊醒、奇妙、困惑和无常:1.美好的是青春,是逝去的时光,是那些已经改变又从未改变的人,也是那些深深刻在脑海中的爱的印记,甚至是后悔,那些证明我们存在于世的全部经历。当人们从一个原点出发,相逢又散去,投入到各自的生活洪流中时,片刻的驻足,怀念起过去,几乎很多人都在习惯性美化它们。长大后觉得甜蜜的回忆,在经历
- 大规模语言模型的书籍分享,从零基础入门到精通非常详细收藏我这一篇就够了
黑客-雨
语言模型人工智能自然语言处理学习大模型学习大模型入门大模型教程
在当今人工智能领域,大规模语言模型成为了研究和应用的热点之一。它们以其大规模的参数和强大的性能表现,推动着机器学习和深度学习技术的发展。对于GPT系列大规模语言模型的发展历程,有两点令人印象深刻。第一点是可拓展的训练架构与学习范式:Transformer架构能够拓展到百亿、千亿甚至万亿参数规模,并且将预训练任务统一为预测下一个词这一通用学习范式;第二点是对于数据质量与数据规模的重视:不同于BERT
- 【Tools】大模型中的BERT概念
音乐学家方大刚
工具bert人工智能深度学习
摇来摇去摇碎点点的金黄伸手牵来一片梦的霞光南方的小巷推开多情的门窗年轻和我们歌唱摇来摇去摇着温柔的阳光轻轻托起一件梦的衣裳古老的都市每天都改变模样方芳《摇太阳》BERT(BidirectionalEncoderRepresentationsfromTransformers)是一种基于Transformer的预训练语言模型,由Google于2018年发布。BERT的目标是通过大规模无监督预训练学习来
- 详述Python环境下配置AI大模型Qwen-72B的步骤
Play_Sai
#Python开发pythonAI大模型人工智能
随着人工智能技术的发展,大规模预训练模型如Qwen-72B等逐渐成为研究和应用的重点。本篇博客旨在提供一份详细的指南,帮助Python开发者们在自己的环境中顺利配置并使用Qwen-72B大模型。请注意:由于Qwen-72B这一模型目前并未公开存在,所以以下内容仅为假设性描述,实际上你需要替换为你想要配置的真实存在的大模型,例如GPT-3、BERT等。一、环境准备1.安装必要的库首先确保你已经安装了
- 突发奇想,玩家用《我的世界》重现美术大师画作,还原度很高
爱游戏的萌博士
如果你喜欢绘画,在其中又特别钟情风景画的话,你可能听说过鲍伯·鲁斯(BobRoss)。这其实是罗伯特·诺曼·鲁斯(RobertNormanRoss)的艺名,他是位美国画家,同时也是一位艺术指导与电视节目主持人。鲁斯以他温柔且和乐的语气为特色,在他著名的电视节目“欢乐画室(TheJoyofPainting)”中担任即席教学画家兼主持人,这个节目活跃于上世纪八九十年代。博士为什么要提上面这位顶着爆炸头
- 大模型落地指南:从下载到本地化部署全流程解析
网安猫叔
人工智能自然语言处理语言模型AIGC深度学习
一、引言随着人工智能技术的迅猛发展,大规模预训练模型(如GPT-4、BERT等)在自然语言处理、图像识别等领域展现出了卓越的性能。然而,如何将这些强大的模型从理论落地到实际应用中,仍然是许多技术从业者面临的挑战。本篇文章旨在为读者提供一份详尽的大模型落地指南,从模型的下载、文件结构的解析,到本地化部署的具体步骤,全面覆盖整个流程。无论你是初次接触大模型的新手,还是希望深入了解部署细节的资深开发者,
- 解决Can‘t load tokenizer for ‘bert-base-chinese‘.问题
CSDNhdlg
NLPbert人工智能深度学习自然语言处理
报错提示:OSError:Can'tloadtokenizerfor'bert-base-chinese'.Ifyouweretryingtoloaditfrom'https://huggingface.co/models',makesureyoudon'thavealocaldirectorywiththesamename.Otherwise,makesure'bert-base-chinese
- 如何用RoBERTa高效提取事件文本结构特征:多层次上下文建模与特征融合
大多_C
人工智能
基于RoBERTa-BASE的特征提取器,提取事件文本数据的结构特征(如段落和篇章结构)涉及多个步骤。RoBERTa作为一种预训练语言模型,可以很好地捕捉输入文本的上下文和依赖关系。具体步骤如下:1.文本预处理在提取事件文本的结构特征之前,需要对文本进行适当的预处理。这一步包括:分句和分段处理:将事件文本拆分为不同的句子或段落,并对每个句子/段落进行标记。每个段落可以视为一个独立的输入序列。Tok
- 这样的电影都骂烂,是我握不动刀还是有人太飘
Sir电影
年度最WTF电影来了!年度最争议电影来了!威尼斯电影节首映,有的观众起立鼓掌,有的观众恨不得朝屏幕丢鞋。观众这样,更别说影评人……迷之又迷的,比如《RogerEbert.com》:恐怖、勾人、迷惑……这是一部刷新你认知的电影。恨之入骨的,比如《纽约观察者报》——我不愿给它贴上“年度最差电影”标签,因为“世纪最差电影”更适合它。评分网站呢,一个比一个不给面子:IMDb7.0,烂番茄68%,豆瓣6.7
- Transformer、BERT、GPT、T5、LLM(大语言模型),以及它们在实际行业中的运用
Funhpc_huachen
transformerbertgpt语言模型深度学习
作为AI智能大模型的专家训练师,我将从主流模型框架的角度来分析其核心技术特点及其在不同实际行业中的应用。我们重点讨论以下几个主流模型框架:Transformer、BERT、GPT、T5、LLM(大语言模型),以及它们在实际行业中的运用。1.Transformer框架Transformer是一种基础的深度学习模型架构,由Google于2017年提出。它引入了注意力机制(Self-Attention)
- fpga图像处理实战-边缘检测 (Roberts算子)
梦梦梦梦子~
OV5640+图像处理图像处理计算机视觉人工智能
Roberts算子Roberts算子是一种用于边缘检测的算子,主要用于图像处理中检测图像的边缘。它是最早的边缘检测算法之一,以其计算简单、速度快而著称。Roberts算子通过计算图像像素在对角方向的梯度来检测边缘,从而突出图像中灰度变化最剧烈的部分。原理Roberts算子通过对图像应用两个2x2的卷积核(也称为掩模或滤波器)来计算图像在水平和垂直方向上的梯度。假设原始图像的像素值为I(x,y),则
- Rhinoceros 8 for Mac/Win:重塑三维建模边界的革新之作
平安喜乐616
Rhinoceros8Rhino8三维建模软件犀牛8
Rhinoceros8(简称Rhino8),作为一款由RobertMcNeel&Assoc公司开发的顶尖三维建模软件,无论是对于Mac还是Windows用户而言,都是一款不可多得的高效工具。Rhino8以其强大的功能、广泛的应用领域以及卓越的性能,在建筑设计、工业设计、产品设计、三维动画制作、科学研究及机械设计等多个领域展现出了非凡的实力。强大的建模能力Rhino8支持多种建模技术,包括曲面建模、
- 预训练语言模型的前世今生 - 从Word Embedding到BERT
脚步的影子
语言模型embeddingbert
目录一、预训练1.1图像领域的预训练1.2预训练的思想二、语言模型2.1统计语言模型2.2神经网络语言模型三、词向量3.1独热(Onehot)编码3.2WordEmbedding四、Word2Vec模型五、自然语言处理的预训练模型六、RNN和LSTM6.1RNN6.2RNN的梯度消失问题6.3LSTM6.4LSTM解决RNN的梯度消失问题七、ELMo模型7.1ELMo的预训练7.2ELMo的Fea
- 【大模型系列篇】预训练模型:BERT & GPT
木亦汐丫
大模型bertgpt人工智能预训练模型大模型
2018年,Google首次推出BERT(BidirectionalEncoderRepresentationsfromTransformers)。该模型是在大量文本语料库上结合无监督和监督学习进行训练的。BERT的目标是创建一种语言模型,可以理解句子中单词的上下文和含义,同时考虑到它前后出现的单词。2018年,OpenAI首次推出GPT(GenerativePre-trainedTransfor
- 【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)
LDG_AGI
Pipeline人工智能机器学习计算机视觉python时序数据库大数据自然语言处理
目录一、引言二、填充蒙版(fill-mask)2.1概述2.2技术原理2.2.1BERT模型的基本概念2.2.2BERT模型的工作原理2.2.3BERT模型的结构2.2.4BERT模型的应用2.2.5BERT模型与Transformer的区别和联系2.3应用场景2.4pipeline参数2.4.1pipeline对象实例化参数2.4.2pipeline对象使用参数2.4.3pipeline返回参数
- IT历史:互联网简史
weixin_34275734
网络操作系统java
Hobbes的互联网大事记-权威的互联网发展史Hobbes’Internet大事记v4.2作者:RobertH’obbes’ZakonInternet福音传道者译者:郭力Internet大事记的版权归RobertHZakon所有(c)1993-9。只要保留版权说明,给出在一个在本文档最后的指向本大事记的连接地址,并且不是出于商业目的,均可以使用本文的部分或全部内容,但是使用者必须向作者提供一份使用
- 大模型--个人学习心得
挚爱清&虚
人工智能
大模型LLM定义大模型LLM,全称LargeLanguageModel,即大型语言模型LLM是一种基于Transformer架构模型,它通过驯良大量文本数据,学习语言的语法、语义和上下文信息,从而能够对自然语言文本进行建模这种模型在自然语言处理(NLP)领域具有广泛应用常见的13个大模型BERT、GPT系列、T5、Meta的Llama系列、华为盘古模型、阿里巴巴通义大模型、科大讯飞星火大模型、百度
- 基于Bert-base-chinese训练多分类文本模型(代码详解)
一颗洋芋
bert分类自然语言处理
目录一、简介二、模型训练三、模型推理一、简介BERT(BidirectionalEncoderRepresentationsfromTransformers)是基于深度学习在自然语言处理(NLP)领域近几年出现的、影响深远的创新模型之一。在BERT之前,已经有许多预训练语言模型,如ELMO和GPT,它们展示了预训练模型在NLP任务中的强大性能。然而,这些模型通常基于单向的上下文信息,即只考虑文本中
- 【深度学习 transformer】使用pytorch 训练transformer 模型,hugginface 来啦
东华果汁哥
深度学习-文本分类深度学习transformerpytorch
HuggingFace是一个致力于开源自然语言处理(NLP)和机器学习项目的社区。它由几个关键组件组成:Transformers:这是一个基于PyTorch的库,提供了各种预训练的NLP模型,如BERT、GPT、RoBERTa、DistilBERT等。它还提供了一个简单易用的API来加载这些模型,并进行微调以适应特定的下游任务。Datasets:这是一个用于加载和预处理NLP数据集的库,与Tran
- LLM大模型落地-从理论到实践
hhaiming_
语言模型人工智能ai深度学习
简述按个人偏好和目标总结了学习目标和路径(可按需学习),后续将陆续整理出相应学习资料和资源。学习目标熟悉主流LLM(Llama,ChatGLM,Qwen)的技术架构和技术细节;有实际应用RAG、PEFT和SFT的项目经验较强的NLP基础,熟悉BERT、T5、Transformer和GPT的实现和差异,能快速掌握业界进展,有对话系统相关研发经验掌握TensorRT-LLM、vLLM等主流推理加速框架
- AI 大模型在文本生成任务中的创新应用
AI_Guru人工智呢
人工智能
概述随着人工智能技术的飞速发展,大模型在文本生成任务中的应用越来越广泛。这些模型通过深度学习技术,能够生成连贯、有意义的文本,甚至在某些情况下达到与人类写作难以区分的程度。本文将探讨AI大模型在文本生成任务中的创新应用,包括自动文摘、机器翻译、创意写作等领域。自动文摘自动文摘是指从给定文本中自动提取关键信息,生成简短摘要的过程。这对于处理大量文本数据、快速获取信息尤为重要。代码示例:基于BERT的
- Bert系列:论文阅读Rethink Training of BERT Rerankers in Multi-Stage Retrieval Pipeline
凝眸伏笔
nlp论文阅读bertrerankerretrieval
一句话总结:提出LocalizedContrastiveEstimation(LCE),来优化检索排序。摘要预训练的深度语言模型(LM)在文本检索中表现出色。基于丰富的上下文匹配信息,深度LM微调重新排序器从候选集合中找出更为关联的内容。同时,深度lm也可以用来提高搜索索引,构建更好的召回。当前的reranker方法并不能完全探索到检索结果的效果。因此,本文提出了LocalizedContrast
- 大语言模型算力优化策略:基于并行化技术的算力共享平台研究
ZhangJiQun&MXP
2024算力共享2021论文语言模型人工智能自然语言处理
目录大语言模型算力优化策略:基于并行化技术的算力共享平台研究摘要引言算力共享平台的设计1.平台架构2.并行化计算技术模型并行化流水线并行化3.资源管理和调度实验与结果分析结论与展望首先,大语言模型(如GPT系列、BERT等)和算力共享的结合是近年来人工智能领域的研究热点。算力共享旨在通过分布式计算技术,将大规模计算任务分配给多个计算节点,以提高计算效率、降低资源成本并加速模型训练和推理过程。其次,
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&