传说中的CV算法工程师抄作业必备手册,既然大佬们烧了那么多的电费为我们总结了这么多能work的trick,那岂有不抄的道理,具体论文的细节本文不做详述,论文地址如下:
https://arxiv.org/abs/2201.03545
以及大佬对此的详细解读
https://mp.weixin.qq.com/s/c6MRbzQE9ErFUWdWKh8PQA
本文仅做对工程应用的整合。
仍然以目标检测经典模型yolov5为例,对源代码做如下的修改增加
# 增加如下代码
#-------------------------------------ConvNeXt------------------------------------------------------
class Block(nn.Module):
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
self.norm = LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
class LayerNorm(nn.Module):
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape,)
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class ConvNeXt_Block(nn.Module): # index 0~3
def __init__(self, index, in_chans, depths, dims, drop_path_rate=0., layer_scale_init_value=1e-6):
super().__init__()
self.index = index
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
)
self.downsample_layers.append(stem)
for i in range(3):
downsample_layer = nn.Sequential(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
)
self.downsample_layers.append(downsample_layer)
self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
cur = 0
for i in range(4):
stage = nn.Sequential(
*[Block(dim=dims[i], drop_path=dp_rates[cur + j],
layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])]
)
self.stages.append(stage)
cur += depths[i]
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.downsample_layers[self.index](x)
x = self.stages[self.index](x)
return x
# 修改parse_model函数
def parse_model(d, ch): # model_dict, input_channels(3)
LOGGER.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args):
try:
args[j] = eval(a) if isinstance(a, str) else a # eval strings
except:
pass
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
c1, c2 = ch[f], args[0]
if c2 != no: # if not output
c2 = make_divisible(c2 * gw, 8)
args = [c1, c2, *args[1:]]
if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
args.insert(2, n) # number of repeats
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum([ch[x] for x in f])
elif m is Detect:
args.append([ch[x] for x in f])
if isinstance(args[1], int): # number of anchors
args[1] = [list(range(args[1] * 2))] * len(f)
elif m is Contract:
c2 = ch[f] * args[0] ** 2
elif m is Expand:
c2 = ch[f] // args[0] ** 2
# 添加加该部分代码
#---------------------------------------------
elif m is ConvNeXt_Block:
c2 = args[0]
args = args[1:]
#----------------------------------------------
else:
c2 = ch[f]
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace('__main__.', '') # module type
np = sum([x.numel() for x in m_.parameters()]) # number params
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
LOGGER.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n_, np, t, args)) # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
if i == 0:
ch = []
ch.append(c2)
return nn.Sequential(*layers), sorted(save)
# Parameters
# 以convnext_tiny_1k为例
nc: 80 # number of classes
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 backbone
backbone:
[[-1, 1, ConvNeXt_Block, [96, 0, 3, [3, 3, 9, 3], [96, 192, 384, 768]]],
[-1, 1, ConvNeXt_Block, [192, 1, 3, [3, 3, 9, 3], [96, 192, 384, 768]]],
[-1, 1, ConvNeXt_Block, [384, 2, 3, [3, 3, 9, 3], [96, 192, 384, 768]]],
[-1, 1, ConvNeXt_Block, [768, 3, 3, [3, 3, 9, 3], [96, 192, 384, 768]]],
]
# YOLOv5 head
head:
[[-1, 1, Conv, [768, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 2], 1, Concat, [1]],
[-1, 3, C3, [768, False]],
[-1, 1, Conv, [384, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 1], 1, Concat, [1]],
[-1, 3, C3, [384, False]],
[-1, 1, Conv, [384, 3, 2]],
[[-1, 8], 1, Concat, [1]],
[-1, 3, C3, [768, False]],
[-1, 1, Conv, [768, 3, 2]],
[[-1, 4], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [768, False]], # 23 (P5/32-large)
[[11, 14, 17], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
网络搭建完成后因为缺少预训练权重,而从零开始训练,会需要大量的时间和算力,也浪费了大佬们花了那么多电费为我们提供的骨干网络权重,因此我们需要将骨干网络的预训练权重更新到我们搭建的检测网络中,代码如下(以convnext_tiny_1k为例):
model_urls = {
"convnext_tiny_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth",
"convnext_small_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth",
"convnext_base_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth",
"convnext_large_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth",
"convnext_base_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth",
"convnext_large_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth",
"convnext_xlarge_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth",
}
url = model_urls['convnext_tiny_1k']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
# 提取模型需要的部分权重
init_dict = {}
for index in range(4):
for k, v in list(checkpoint['model'].items()):
if k.startswith('norm') or k.startswith('head'):
pass
else:
init_dict['.'.join(['model', str(index), k])] = v
# Create model
model = Model(opt.cfg).to(device)
model.train()
# 更新Backbone部分网络权重
model_dict = model.state_dict()
model_dict.update(init_dict)
model.load_state_dict(model_dict)
完整项目见Github
https://github.com/OutBreak-hui/YoloV5-Flexible-and-Inference