Java版本TransE代码的学习

参考资料

Anery/transE: transE算法 简单python实现 FB15k (github.com)

Translating Embeddings for Modeling Multi-relational Data (nips.cc)

Java版本TransE代码的学习_第1张图片

输入

1.数据集S

2.Entities集合E

3.Relations集合L

4.margin hyperparameter γ

5.每个向量的长度 k

初始化

Java版本TransE代码的学习_第2张图片 

为Entities集合中的每个实体以及Relation集合中的实体,初始化一个向量,并对初始化的向量进行L2范数归一化

其中,相同的entity在头或者在尾出现,都是使用相同的向量

for (int i = 0; i < relation_num; i++) {  
    for (int j = 0; j < vector_len; j++) {  
        relation_vec[i][j] = uniform(-6 / sqrt(vector_len), 6 / sqrt(vector_len));  
    }  
}  
for (int i = 0; i < entity_num; i++) {  
    for (int j = 0; j < vector_len; j++) {  
        entity_vec[i][j] = uniform(-6 / sqrt(vector_len), 6 / sqrt(vector_len));//初始化所有的数据组合都有一个向量  
    }  
    norm(entity_vec[i], vector_len);  
}
    static double uniform(double min, double max) {
        // generate a float number which is in [min, max), refer to the Python uniform
        return min + (max - min) * Math.random();
    }

用梯度下降更新每个初始化的向量

Java版本TransE代码的学习_第3张图片

1.第6行表示,每次迭代,都从数据集中随机抽出大小为b的数据,为Sbatch

2.第7到10行表示,替换头或者尾生成错误的数据,正确和错误的数据是Tbatch中的一个子集

3.根据损失值,分别更新h的向量,l的向量,t的向量,错误的h‘或者错误的t’向量

其中,代码中的更新顺序会和伪代码有略微的差别。另外一个问题是代码的终止条件是按循环的次数,但实际上论文当中写的是按照验证集的预测效果来终止迭代

for (int epoch = 0; epoch < nepoch; epoch++) {
            res = 0;  // means the total loss in each epoch
            for (int batch = 0; batch < nbatches; batch++) {
                for (int k = 0; k < batchsize; k++) {
                    int i = rand_max(fb_h.size());//第i条数据
                    int j = rand_max(entity_num);//生成一个随机的节点,第j个节点
                    int relation_id = fb_r.get(i);//第i条数据的relation
                   double pr = 1000 * right_num.get(relation_id) / (right_num.get(relation_id) + left_num.get(relation_id));//随机选择
                    if (method == 0) {
                        pr = 500;
                    }
                    if (rand() % 1000 < pr) {
                        Pair key = new Pair<>(fb_h.get(i), fb_r.get(i));
                        Set values = head_relation2tail.get(key);  // 获取头实体和关系对应的尾实体集合
                        while (values.contains(j)) {
                            j = rand_max(entity_num);//这个随机节点需要是一个错误的数值,生成尾巴是错误的数据
                        }
                        res += train_kb(fb_h.get(i), fb_l.get(i), fb_r.get(i), j, fb_l.get(i), fb_r.get(i), res);
                    } else {
                        Pair key = new Pair<>(j, fb_r.get(i));//生成头是错误的数据
                        Set values = head_relation2tail.get(key);
                        if (values != null) {
                            while (values.contains(fb_l.get(i))) {
                                j = rand_max(entity_num);
                                key = new Pair<>(j, fb_r.get(i));
                                values = head_relation2tail.get(key);
                                if (values == null) break;
                            }
                        }
                        res += train_kb(fb_h.get(i), fb_l.get(i), fb_r.get(i), j, fb_l.get(i), fb_r.get(i), res);
                    }
                    norm(relation_vec[fb_r.get(i)], vector_len);//归一化
                    norm(entity_vec[fb_h.get(i)], vector_len);//归一化
                    norm(entity_vec[fb_l.get(i)], vector_len);//归一化
                    norm(entity_vec[j], vector_len);//归一化
                }
            }
            System.out.printf("epoch: %s %s\n", epoch, res);
        }

生成一个随机数

根据数值决定生成错误的头还是错误的尾

                   double pr = 1000 * right_num.get(relation_id) / (right_num.get(relation_id) + left_num.get(relation_id));//随机选择
                    if (method == 0) {
                        pr = 500;
                    }
if (method == 0) {
                        pr = 500;
                    }
                    if (rand() % 1000 < pr) {

生成错误的triple

其中这里生成的数据是原数据集中没有的

生成错误的尾实体数据

                                   if (rand() % 1000 < pr) {
                        Pair key = new Pair<>(fb_h.get(i), fb_r.get(i));
                        Set values = head_relation2tail.get(key);  // 获取头实体和关系对应的尾实体集合
                        while (values.contains(j)) {
                            j = rand_max(entity_num);//这个随机节点需要是一个错误的数值,生成尾巴是错误的数据
                        }
                        res += train_kb(fb_h.get(i), fb_l.get(i), fb_r.get(i), fb_h.get(i), j, fb_r.get(i), res);
                    }    }

其中,代码文件中有一个错误的地方,j传递的位置出现了问题

      res += train_kb(fb_h.get(i), fb_l.get(i), fb_r.get(i), fb_h.get(i), j, fb_r.get(i),

生成错误的头实体数据

                        Pair key = new Pair<>(j, fb_r.get(i));//生成头是错误的数据
                        Set values = head_relation2tail.get(key);
                        if (values != null) {
                            while (values.contains(fb_l.get(i))) {
                                j = rand_max(entity_num);
                                key = new Pair<>(j, fb_r.get(i));
                                values = head_relation2tail.get(key);
                                if (values == null) break;
                            }
                        }

计算损失值

只有损失值为正数的时候,才执行embedding的更新

 

    static double train_kb(int head_a, int tail_a, int relation_a, int head_b, int tail_b, int relation_b, double res) {
        // 极大似然估计的计算过程
        double sum1 = calc_sum(head_a, tail_a, relation_a);
        double sum2 = calc_sum(head_b, tail_b, relation_b);
        if (sum1 + margin > sum2) { {

计算向量距离,即上面的sum1和sum2

Java版本TransE代码的学习_第4张图片 

两种计算方式,一种是用绝对值,另一种是开方

其中,sum是对每一位的差值进行累加

    static double calc_sum(int e1, int e2, int rel) {
        // 计算头实体、关系与尾实体之间的向量距离
        double sum = 0;
        if (L1_flag) {
            for (int i = 0; i < vector_len; i++) {
                sum += abs(entity_vec[e2][i] - entity_vec[e1][i] - relation_vec[rel][i]);
            }
        } else {
            for (int i = 0; i < vector_len; i++) {
                sum += sqr(entity_vec[e2][i] - entity_vec[e1][i] - relation_vec[rel][i]);
            }
        }
        return sum;
    }

更新embedding

对正确的embedding中的向量head,relation,tail执行梯度下降

对错误的embedding中的向量head,relation,tail执行梯度下降

gradient(head_a, tail_a, relation_a, head_b, tail_b, relation_b);
    static void gradient(int head_a, int tail_a, int relation_a, int head_b, int tail_b, int relation_b) {
        for (int i = 0; i < vector_len; i++) {
            double delta1 = entity_vec[tail_a][i] - entity_vec[head_a][i] - relation_vec[relation_a][i];
            double delta2 = entity_vec[tail_b][i] - entity_vec[head_b][i] - relation_vec[relation_b][i];
            double x;
            if (L1_flag) {
                if (delta1 > 0) {
                    x = 1;
                } else {
                    x = -1;
                }
                relation_vec[relation_a][i] += x * learning_rate;
                entity_vec[head_a][i] += x * learning_rate;
                entity_vec[tail_a][i] -= x * learning_rate;

                if (delta2 > 0) {
                    x = 1;
                } else {
                    x = -1;
                }
                relation_vec[relation_b][i] -= x * learning_rate;
                entity_vec[head_b][i] -= x * learning_rate;
                entity_vec[tail_b][i] += x * learning_rate;
            } else {
                delta1 = abs(delta1);
                delta2 = abs(delta2);
                relation_vec[relation_a][i] += learning_rate * 2 * delta1;
                entity_vec[head_a][i] += learning_rate * 2 * delta1;
                entity_vec[tail_a][i] -= learning_rate * 2 * delta1;

                relation_vec[relation_b][i] -= learning_rate * 2 * delta2;
                entity_vec[head_b][i] -= learning_rate * 2 * delta2;
                entity_vec[tail_b][i] += learning_rate * 2 * delta2;
            }
        }
    }

对更新后的向量,执行归一化

                    norm(relation_vec[fb_r.get(i)], vector_len);//归一化
                    norm(entity_vec[fb_h.get(i)], vector_len);//归一化
                    norm(entity_vec[fb_l.get(i)], vector_len);//归一化
                    norm(entity_vec[j], vector_len);//归一化

完成预测

    public void run() throws IOException {
        relation_vec = new double[relation_num][vector_len];
        entity_vec = new double[entity_num][vector_len];

        Read_Vec_File("resource/result/relation2vec.bern", relation_vec);
        Read_Vec_File("resource/result/entity2vec.bern", entity_vec);

        int head_meanRank_raw = 0, tail_meanRank_raw = 0, head_meanRank_filter = 0, tail_meanRank_filter = 0;  // 在正确三元组之前的匹配距离之和
        int head_hits10 = 0, tail_hits10 = 0, head_hits10_filter = 0, tail_hits10_filter = 0;  // 在正确三元组之前的匹配个数之和
        int relation_meanRank_raw = 0, relation_meanRank_filter = 0;
        int relation_hits10 = 0, relation_hits10_filter = 0;

        // ------------------------ evaluation link predict ----------------------------------------
        System.out.printf("Total test triple = %s\n", fb_l.size());
        System.out.printf("The evaluation of link predict\n");
        for (int id = 0; id < fb_l.size(); id++) {
            int head = fb_h.get(id);
            int tail = fb_l.get(id);
            int relation = fb_r.get(id);
            List> head_dist = new ArrayList<>();//预测头
            for (int i = 0; i < entity_num; i++) {
                double sum = calc_sum(i, tail, relation);//计算所有组合的距离
                head_dist.add(new Pair<>(i, sum));
            }
            Collections.sort(head_dist, (o1, o2) -> Double.compare(o1.b, o2.b));//对headlist排序
            int filter = 0;  // 统计匹配过程已有的正确三元组个数
            for (int i = 0; i < head_dist.size(); i++) {
                int cur_head = head_dist.get(i).a;
                if (hrt_isvalid(cur_head, relation, tail)) {  // 如果当前三元组是正确三元组,则记录到filter中
                    filter += 1;
                }
                if (cur_head == head) {
                    head_meanRank_raw += i; // 统计小于距离的数量
                    head_meanRank_filter += i - filter;
                    if (i <= 10) {
                        head_hits10++;//不过滤的结果
                    }
                    if (i - filter <= 10) {//去掉在数据集中存在,但不是想要的结果数据
                        head_hits10_filter++;//过滤的结果
                    }
                    break;
                }
            }

            filter = 0;
            List> tail_dist = new ArrayList<>();//预测尾巴
            for (int i = 0; i < entity_num; i++) {
                double sum = calc_sum(head, i, relation);
                tail_dist.add(new Pair<>(i, sum));
            }
            Collections.sort(tail_dist, (o1, o2) -> Double.compare(o1.b, o2.b));
            for (int i = 0; i < tail_dist.size(); i++) {
                int cur_tail = tail_dist.get(i).a;
                if (hrt_isvalid(head, relation, cur_tail)) {
                    filter++;
                }
                if (cur_tail == tail) {
                    tail_meanRank_raw += i;
                    tail_meanRank_filter += i - filter;
                    if (i <= 10) {
                        tail_hits10++;
                    }
                    if (i - filter <= 10) {
                        tail_hits10_filter++;
                    }
                    break;
                }
            }
        }
        System.out.printf("-----head prediction------\n");
        System.out.printf("Raw MeanRank: %.3f,  Filter MeanRank: %.3f\n",
                (head_meanRank_raw * 1.0) / fb_l.size(), (head_meanRank_filter * 1.0) / fb_l.size());
        System.out.printf("Raw Hits@10: %.3f,  Filter Hits@10: %.3f\n",
                (head_hits10 * 1.0) / fb_l.size(), (head_hits10_filter * 1.0) / fb_l.size());

        System.out.printf("-----tail prediction------\n");
        System.out.printf("Raw MeanRank: %.3f,  Filter MeanRank: %.3f\n",
                (tail_meanRank_raw * 1.0) / fb_l.size(), (tail_meanRank_filter * 1.0) / fb_l.size());
        System.out.printf("Raw Hits@10: %.3f,  Filter Hits@10: %.3f\n",
                (tail_hits10 * 1.0) / fb_l.size(), (tail_hits10_filter * 1.0) / fb_l.size());

        // ------------------------ evaluation relation-linked predict ----------------------------------------
        int relation_hits = 5;  // 选取hits@5为评价指标
        for (int id = 0; id < fb_l.size(); id++) {
            int head = fb_h.get(id);
            int tail = fb_l.get(id);
            int relation = fb_r.get(id);
            List> relation_dist = new ArrayList<>();
            for (int i = 0; i < relation_num; i++) {
                double sum = calc_sum(head, tail, i);
                relation_dist.add(new Pair<>(i, sum));
            }
            Collections.sort(relation_dist, (o1, o2) -> Double.compare(o1.b, o2.b));
            int filter = 0;  // 统计匹配过程已有的正确三元组个数
            for (int i = 0; i < relation_dist.size(); i++) {
                int cur_relation = relation_dist.get(i).a;
                if (hrt_isvalid(head, cur_relation, tail)) {  // 如果当前三元组是正确三元组,则记录到filter中
                    filter += 1;
                }
                if (cur_relation == relation) {
                    relation_meanRank_raw += i; // 统计小于距离的数量
                    relation_meanRank_filter += i - filter;
                    if (i <= 5) {
                        relation_hits10++;
                    }
                    if (i - filter <= 5) {
                        relation_hits10_filter++;
                    }
                    break;
                }
            }
        }
        System.out.printf("-----relation prediction------\n");
        System.out.printf("Raw MeanRank: %.3f,  Filter MeanRank: %.3f\n",
                (relation_meanRank_raw * 1.0) / fb_r.size(), (relation_meanRank_filter * 1.0) / fb_r.size());
        System.out.printf("Raw Hits@%d: %.3f,  Filter Hits@%d: %.3f\n",
                relation_hits, (relation_hits10 * 1.0) / fb_r.size(),
                relation_hits, (relation_hits10_filter * 1.0) / fb_r.size());
    }

首先读取训练集中的文件

读取relation的向量,entity的向量

        Read_Vec_File("resource/result/relation2vec.bern", relation_vec);
        Read_Vec_File("resource/result/entity2vec.bern", entity_vec);

以预测head为例

每一条数据为一个测试样例

1.计算每一个答案的距离(分数)

2.对答案降序排名

3.统计过滤的结果,以及不过滤的结果

过滤的结果,在数据集当中有,满足head的条件,但是与这条数据中的head不相同,在计算排名的时候将这些答案过滤掉

        // ------------------------ evaluation link predict ----------------------------------------
        System.out.printf("Total test triple = %s\n", fb_l.size());
        System.out.printf("The evaluation of link predict\n");
        for (int id = 0; id < fb_l.size(); id++) {
            int head = fb_h.get(id);
            int tail = fb_l.get(id);
            int relation = fb_r.get(id);
            List> head_dist = new ArrayList<>();//预测头
            for (int i = 0; i < entity_num; i++) {
                double sum = calc_sum(i, tail, relation);//计算所有组合的距离
                head_dist.add(new Pair<>(i, sum));
            }
            Collections.sort(head_dist, (o1, o2) -> Double.compare(o1.b, o2.b));//对headlist排序
            int filter = 0;  // 统计匹配过程已有的正确三元组个数
            for (int i = 0; i < head_dist.size(); i++) {
                int cur_head = head_dist.get(i).a;
                if (hrt_isvalid(cur_head, relation, tail)) {  // 如果当前三元组是正确三元组,则记录到filter中
                    filter += 1;
                }
                if (cur_head == head) {
                    head_meanRank_raw += i; // 统计小于距离的数量
                    head_meanRank_filter += i - filter;
                    if (i <= 10) {
                        head_hits10++;//不过滤的结果
                    }
                    if (i - filter <= 10) {//去掉在数据集中存在,但不是想要的结果数据
                        head_hits10_filter++;//过滤的结果
                    }
                    break;
                }
            }

你可能感兴趣的:(算法,人工智能)