- GPU 之后,IMU 登场:AI 发展的下一次飞跃
你早晨醒来,手机上的大模型帮你写完邮件、翻译合同,却依旧不能帮你把厨房里洒掉的牛奶擦干。你戴上的AR眼镜知道“那里有杯子”,却抓不到它——AI会说不会做。是不是哪里少了一截?人工智能(AI)的发展历程中,我们见证了从简单的数据处理到复杂的语言生成能力的飞跃。然而,尽管AI在虚拟世界中表现出色,它在物理世界中的表现却相对滞后。为了填补这一空白,AI正在进入一个新的发展阶段:行动驱动时代。在本文中,我
- 阿里云天池-学习笔记(7.22)
2301_81822737
深度学习
概念的初步认识和学习一、损失函数损失函数是衡量模型预测值与真实值之间差异的一个量度,通过最小化这个差异来优化模型的参数。损失函数的选择直接影响到模型的训练效果和最终性能。二、one-hot编码one-hot编码使用N位状态寄存器来对N个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候其中只有一位有效(即为1,其余为0)。具体来说,对于每个分类变量,都会为其分配一个唯一的二进制位,并使用该
- 借助零信任网格重塑分布式MCP与LLM访问:安全、灵活的下一代架构实践
码力金矿
机器学习深度学习人工智能人工智能自动化运维数据库mysqlpythonjava
在数字化转型的浪潮中,AI应用与分布式系统正在加速融合。传统架构中,MCP(模型上下文协议)服务与LLM(大语言模型)工具的部署常面临安全暴露、网络复杂性、跨防火墙通信等挑战。本文将结合零信任网格(ZTM,ZeroTrustMesh)与Flomesh技术,探索一种更安全、灵活的分布式架构方案,让MCP服务无需VPN或静态IP即可实现全球可访问,同时为LLM应用提供统一的安全层。一、传统分布式架构的
- 爆改YOLOv8 | 利用AFPN增加小目标检测层(替换小目标检测头)
1,本文介绍这篇文章的改进机制是利用新推出的渐近特征金字塔网络(AFPN)来优化yolov8的检测头,AFPN的核心是引入一种渐近的特征融合策略,将底层和高层的特征逐渐整合到目标检测过程中。这种方式有助于减小不同层次特征之间的语义差距,提高特征融合效果,使得检测模型能更好地适应不同层次的语义信息。关于AFPN的详细介绍可以看论文:https://arxiv.org/pdf/2306.15988.p
- Java内存模型深度解析:栈、堆、方法区详解
wsj__WSJ
javajava
本文通过生动比喻和实战案例,帮你彻底掌握Java内存结构中栈内存、堆内存和方法区的核心原理与协作方式。一、为什么要区分三种内存?Java划分栈、堆、方法区是为了提高内存使用效率,不同数据有不同的生命周期和访问频率:数据类型类比场景存储位置生命周期临时数据(方法参数)便签纸栈内存方法执行期间对象实例常用文件夹堆内存对象存在期间类定义信息公司制度手册方法区程序运行期间就像高效的办公桌管理:栈内存:临时
- 初识TCP和UDP
F.LASH.
网络编程网络tcp/ipudplinuxarm开发
文章目录前言一、网络是什么?二、TCP和UDP的特点三、网络层协议四、Linux下网络命令以及网络配置总结前言本期主要分享的是网络的一些基本概念以及UDP相关通信的内容,希望各位小伙伴能够把接口使用起来!一、网络是什么?1.网络:主机间数据共享、数据收发2.协议:通信双方约定的一套标准3.国际标准OSI模型应用层传输数据表示层数据加密会话层建立会话链接传输层传输方式网络层数据路由数据链路层局域网通
- AI Agent开发学习系列 - langchain之memory(1):内存中的短时记忆
alex100
AIAgent学习人工智能langchainprompt语言模型python
内存中的短时记忆,在LangChain中通常指ConversationBufferMemory这类“对话缓冲记忆”工具。它的作用是:在内存中保存最近的对话历史,让大模型能理解上下文,实现连续对话。对话缓冲记忆”工具主要特点只保留最近的对话内容(如最近N轮),不会无限增长,节省内存和token。适合短对话、上下文关联不深的场景。支持多种变体,如窗口记忆(ConversationBufferWindo
- 如何构建FunASR的本地语音识别服务
FunASR简介FunASR是阿里巴巴达摩院开源的高性能语音识别工具包,支持离线识别和实时流式识别两种模式。其核心特点包括:支持多种语音任务:ASR(自动语音识别)、VAD(语音活动检测)、标点恢复、关键词检测等。提供预训练模型:覆盖中文、英文等多语言,支持不同场景(通用、会议、直播等)。支持多种部署方式:本地Python、Docker容器、ONNX推理优化等。开源地址:GitHub-FunASR
- 【论文蒸馏】Recent Advances in Speech Language Models: A Survey
Greener_Pat
论文蒸馏语言模型人工智能AudioLM
AbstractLLM蓬勃发展,但从交互的自然性上看语音大模型(SpeechLM)有巨大的发展空间。直接的方法是ASR(语音转文字)+LLM+TTS(文字转语音),但是这样有其固有的限制,而端到端的SpeechLM表现更好,本文及其方法论做了一个概览的综述1.Introduction大语言模型提供了强大的AI基础支架,在其它领域有着广泛应用。但交互上不自然,所以需要声学大模型。一种直接的实现方式是
- 基于LDA模型的经济金融政策文本研究与分析设计与实现,很详细
python编程狮
金融人工智能pythonLDA主题分析情感分析词云图文本挖掘
摘要经济金融政策文本的研究与分析对于理解国家经济发展方向和政策制定逻辑至关重要。近年来,随着信息技术的发展,基于文本的定量分析方法在经济金融领域得到广泛应用。LDA(LatentDirichletAllocation)作为一种典型的主题模型,能够有效地从大量政策文本中提取潜在的主题结构,帮助研究者理解和分析政策的核心内容和演变趋势。本研究基于LDA模型,对经济金融政策文本进行了系统的研究与分析。首
- 基于SVm和随机森林算法模型的中国黄金价格预测分析与研究
python编程狮
支持向量机算法随机森林python机器学习人工智能
摘要本研究基于回归模型,运用支持向量机(SVM)、决策树和随机森林算法,对中国黄金价格进行预测分析。通过历史黄金价格数据的分析和特征工程,建立了相应的预测模型,并利用SVM、决策树和随机森林算法进行训练和预测。首先,通过对黄金价格时间序列数据的探索性分析,发现黄金价格存在一定的趋势和季节性变化。随后,进行了数据预处理和特征选择,为建立准确的预测模型奠定了基础。分别使用SVM、决策树和随机森林算法建
- C++学习笔记day3
既白765
c++学习
继承:好处:减少重复代码语法:class子类:继承方式父类子类也称为派生类,父类也称为基类。继承中的对象模型:父类中所有的非静态成员都会被子类继承。利用开发人员命令提示工具查看对象模型:跳转盘符C:跳转文件路径cd具体路径下查看命名cl/d1reportSingleClassLayout类名文件名继承中的构造和析构顺序:先构造父类再构造子类先析构子类再析构父类继承中同名成员处理方式:访问子类同名成
- JAVA面试宝典 -《DDD实战:从贫血模型到领域事件》
DDD实战:从贫血模型到领域事件引言:为什么从三层架构转向DDD?在传统的三层架构中,我们习惯将系统划分为Controller、Service和Repository层,关注点更多落在“技术职责”而非“业务语义”。然而,随着系统复杂度提高,贫血模型、重复逻辑、脆弱耦合等问题层出不穷。领域驱动设计(DDD)正是为了解决这些问题而生。它强调以业务为中心建模,将“业务行为”作为核心驱动软件设计,帮助系统在
- 《Spring核心容器源码解密:IOC与事件驱动模型》
Spring核心容器源码解密:IOC与事件驱动模型引言:Spring容器的核心职责Spring框架的核心容器是其基石,承担着两大关键职责:控制反转(IOC):管理对象生命周期与依赖关系事件驱动模型:实现组件间解耦通信这两大机制共同构建了Spring"高内聚、低耦合"的架构哲学。本文将深入源码层面,揭示IOC容器与事>件模型如何协同工作,并通过实战展示如何构建解耦的业务系统。Spring容器IOC控
- 代理服务器详解(proxy server)
玄魄灵归
分布式代理模式服务器java
什么是代理服务器(proxyserver)代理服务器(ProxyServer)是一个中间服务器,位于客户端和目标服务器之间。它代表客户端向目标服务器发送请求,并将目标服务器的响应返回给客户端,其模型如下图所示:客户端请求:客户端(如浏览器)向代理服务器发送请求,例如请求访问一个网站。请求转发:代理服务器接收到客户端的请求后,会将该请求转发给目标服务器。目标服务器响应:目标服务器处理请求并将响应数据
- HTTP性能优化实战技术文章大纲
x10n9
http性能优化网络协议
HTTP性能优化实战技术文章大纲理解HTTP性能瓶颈HTTP协议在请求-响应模型中的性能瓶颈主要涉及延迟、带宽限制和资源加载效率。通过分析网络请求的各个环节,识别关键性能问题,例如DNS解析时间、TCP连接建立、SSL/TLS握手时间等。减少HTTP请求数量合并CSS和JavaScript文件,使用CSSSprites技术减少图片请求次数。内联小型资源如图标或CSS片段,避免额外的HTTP请求。采
- Python训练 + Go优化 + C#部署:端到端AI模型的跨语言实践
威哥说编程
人工智能学习资料库pythongolangc#
在现代AI应用中,如何高效地训练、优化、并最终部署AI模型是一项复杂且具有挑战性的任务。在这一过程中,选择合适的编程语言和工具可以显著提高效率和系统的性能。Python作为AI领域的主流语言,具有丰富的深度学习框架(如PyTorch和TensorFlow),在模型训练方面处于领先地位。然而,针对计算密集型任务(如数据预处理、加密等),Go语言因其高效的并发处理和出色的性能,成为优化计算的理想选择。
- JVM基础篇1 - Class的加载
The小可
JVMjavaide
JVM基础篇1-Class的加载JVM基础篇2-指令集JVM进阶篇1-内存模型JVM进阶篇2-GC垃圾回收JVM总览-JVM架构引入jvm面试题:谈谈对jvm的理解?java8虚拟机和之前的变化更新?什么是OOM,什么是栈溢出StackOverFlowError?怎么分析JVM常用的调优参数有哪些?内存快照如何抓取?怎么分析Dump文件?知道吗?谈谈jVM,类加载器的认识?1.什么是JVM?jvm
- 复习博客:JVM
hdzw20
java八股文复习jvmjavaintellij-ideaspring后端
复习博客:JVM今日复习内容今天学习Java虚拟机(JVM),它是Java程序运行的基石。理解JVM的工作原理对于优化Java应用性能和排查问题至关重要。主要复习了以下内容:JVM内存模型JVM内存模型(也称为运行时数据区域)主要分为以下几个部分:程序计数器(ProgramCounterRegister):一块较小的内存空间,是当前线程所执行的字节码的行号指示器。每个线程都有一个独立的程序计数器,
- Matlab学习笔记:矩阵基础
MATLAB学习笔记:矩阵基础作为MATLAB的核心,矩阵是处理数据的基础工具。矩阵本质上是一个二维数组,由行和列组成,用于存储和操作数值数据。在本节中,我将详细讲解矩阵的所有知识点,包括创建、索引、运算、函数等,确保内容通俗易懂。我会在关键地方添加MATLAB代码示例,帮助你直观理解。最后,我会总结本课重点,并引出下一节“逻辑基础”的内容。一、什么是矩阵?在MATLAB中,矩阵是一个二维数组,元
- Apache Ignite 的并发控制:实现高性能事务处理的关键
AI天才研究院
AI实战AI人工智能与大数据LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍随着大数据时代的到来,数据量的增长和计算能力的提升使得传统的数据库和计算模型已经无法满足业务需求。为了应对这些挑战,分布式计算和存储技术得到了广泛的研究和应用。ApacheIgnite是一款高性能的分布式数据库和计算平台,它可以提供实时性能和高可用性,同时支持事务处理和并发控制。在这篇文章中,我们将深入探讨ApacheIgnite的并发控制机制,以及如何实现高性能事务处理。我们将从以下
- 前端权限控制:深入理解与实现RBAC模型
什么是RBAC?RBAC(Role-BasedAccessControl,基于角色的访问控制)是一种广泛应用于系统权限管理的模型。它将权限与角色关联,用户通过被分配适当的角色来获得相应的权限,而不是直接将权限分配给用户。在前端领域,RBAC模型帮助我们实现:界面的动态渲染(不同角色看到不同UI)路由访问控制操作权限校验数据展示过滤前端RBAC的核心概念1.用户(User)系统的使用者,可以拥有一个
- 大模型(LLM)推理框架汇总
AIGC大模型 吱屋猪
langchain人工智能AI-native百度产品经理神经网络自然语言处理
MLCLLMsubmodulesinMLCLLM大模型(LLM)好性能通用部署方案,陈天奇(tvm发起者)团队开发.项目链接docs:https://llm.mlc.ai/docs/github:https://github.com/mlc-ai/mlc-llm支持的平台和硬件platforms&hardware支持的模型|Architecture|PrebuiltModelVariants||—
- YOLO目标检测模型优化技术全景解析
YOLO目标检测模型优化技术全景解析作为实时目标检测领域的标杆算法,YOLO系列模型通过持续的技术革新不断提升性能边界。本文将从模型架构设计、数据优化、注意力机制融合、后处理策略及训练方法等维度,系统剖析YOLO优化领域的关键技术与最新进展。一、模型架构优化:突破性能瓶颈的核心路径多尺度检测层增强针对小目标检测难题,主流方案通过增加浅层检测通道优化特征提取。例如在YOLOv5中引入160×160特
- DL00478-涡轮叶片缺陷检测数据集yolo格式1300张左右
涡轮叶片缺陷检测数据集yolo格式1300张左右涡轮叶片缺陷检测数据集YOLO格式解析:提升研究与论文写作的关键要点在研究涡轮叶片缺陷检测的过程中,数据集的选择和格式处理是一个至关重要的环节。特别是当你打算通过卷积神经网络(CNN)等深度学习模型进行缺陷检测时,数据集的标注和格式化直接影响到模型的训练效果和论文的质量。本文将重点探讨涡轮叶片缺陷检测数据集的YOLO格式,并分析如何利用这一格式为研究
- HCIP第一天课程笔记整理
搞IT的马哥
IP网络网络协议tcp/ip服务器
HCIP----huawei认证高级工程师抽象语言先转化成编码编码一定要转化成二进制(为什么一定要转化成二进制?)二进制信号转化成电信号处理电信号(协议等同于标准,目的就是提升服务)(1876年电话诞生,1946年第一台电子计算机诞生)OSI参考模型---OSI/RM---ISO(国际标准化组织)---1979年颁布开放式系统互联参考模型(应表会传网数物)应用层---提供各种应用服务,将抽象语言转
- 《领导梯队》丨你真的会当领导吗?
笔墨之林
企业想要获得成功,就必须在各个领导阶层拥有出色的领导者。然而,企业内部培养领导人才的传统模式,常常缺乏系统性和完整性。《领导梯队》一书有效地解决了上述问题,指导企业成功应对今天的商业环境带来的挑战。“领导梯队模型”源自通用电气等世界卓越企业的实践,对于企业制定领导人才继任计划和培养各级领导人才具有重要的指导作用。01从管理自我到管理他人第一次担任经理,想要获得成功需要一个重大的转变,即他们的工作成
- YOLO 目标检测的改进方法
YOLO目标检测的改进方法可以从模型架构、训练策略、损失函数等多个方面入手,以下是一些常见的改进方法方向及参考文献:模型架构改进骨干网络替换:使用更轻量或更强大的网络替换原始骨干网络。轻量级网络如MobileNetV3、ShuffleNetV2等适合移动端部署,可提高推理速度;高性能网络如ConvNeXt、SwinTransformer等能提取更丰富的语义特征,提升检测精度。还可添加CBAM、SE
- 分类模型(BERT)训练全流程
巴伦是只猫
人工智能分类bert数据挖掘
使用BERT实现分类模型的完整训练流程BERT(BidirectionalEncoderRepresentationsfromTransformers)是一种强大的预训练语言模型,在各种NLP任务中表现出色。下面我将详细梳理使用BERT实现文本分类模型的完整训练过程。1.准备工作1.1环境配置pipinstalltransformerstorchtensorflowpandassklearn1.2
- Java学习----NIO模型
典孝赢麻崩乐急
java学习nio
在Java的I/O模型中,NIO(Non-BlockingI/O,非阻塞I/O)是对BIO的重要改进。它为高并发场景提供了更高效的处理方式,在众多Java应用中发挥着关键作用。NIO模型的核心在于非阻塞和多路复用,其采用“一个线程处理多个连接”的模式,主要依靠通道(Channel)、缓冲区(Buffer)和选择器(Selector)这三个核心组件协同工作,每个核心组件的功能原理和功能如下:(1)通
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源