在学习李沐老师的课时,需要下载d2l库,但有的同学没有下载,所以在此我进行库中一些函数的总结,持续更新!
def use_svg_display(): #@save
"""使用svg格式在Jupyter中显示绘图"""
backend_inline.set_matplotlib_formats('svg')
def set_figsize(figsize=(3.5, 2.5)): #@save
"""设置matplotlib的图表大小"""
use_svg_display()
plt.rcParams['figure.figsize'] = figsize
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
"""设置matplotlib的轴"""
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlim(xlim)
axes.set_ylim(ylim)
if legend:
axes.legend(legend)
axes.grid()
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
"""绘制数据点"""
if legend is None:
legend = []
set_figsize(figsize)
axes = axes if axes else plt.gca()
# 如果X有一个轴,输出True
def has_one_axis(X):
return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)
and not hasattr(X[0], "__len__"))
if has_one_axis(X):
X = [X]
if Y is None:
X, Y = [[]] * len(X), X
elif has_one_axis(Y):
Y = [Y]
if len(X) != len(Y):
X = X * len(Y)
axes.cla()
for x, y, fmt in zip(X, Y, fmts):
if len(x):
axes.plot(x, y, fmt)
else:
axes.plot(y, fmt)
set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
class Accumulator:
def __init__(self, n):
self.data=[0.0]*n
def add(self, *args):
self.data=[a+float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data=[0.0]*len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def evaluate_loss(net, data_iter, loss):
metric=Accumulator(2)
for x, y in data_iter:
out=net(x)
y=y.reshape(out.shape)
l=loss(out, y)
metric.add(l.sum(), l.numel())
return metric[0]/metric[1]
def load_array(data_arrays, batch_size, is_train=True):
"""Construct a PyTorch data iterator.
Defined in :numref:`sec_linear_concise`"""
dataset = TensorDataset(*data_arrays)
return DataLoader(dataset, batch_size, shuffle=is_train)